МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 541.64:543.422.4:597.39

СПЕКТРОСКОПИЧЕСКОЕ ОПРЕДЕЛЕНИЕ СОСТАВА БИСУЛЬФИТНЫХ ПРОИЗВОДНЫХ СОПОЛИМЕРОВ АКРОЛЕИНА С АКРИЛОВОЙ КИСЛОТОЙ

Воронков М. Г., Линченко В. И., Розанько Н. И., Бродская Э. И., Линченко В. М.

Разработан спектроскопический метод определения групп CHO, SO₃Na, COONa (при их совместном присутствии) с помощью ИК-спектров поглощения в бисульфитных производных сополимеров акролеина с акриловой кислотой.

Ранее мы сообщили о получении полизэлектролитов на основе сополимеров акролеина с акриловой кислотой, обладающих биологической активностью [1]. Одновременное присутствие в этих сополимерах нескольких типов функциональных групп затрудняет определение состава обычными методами химического анализа.

Нами разработан спектроскопический метод определения групп CHO, SO₃Na, COONa с помощью ИК-спектров поглощения в бисульфитных производных сополимеров (БПС) акролеина (АР) с акриловой кислотой (АК).

ИК-спектры поглощения получены на спектрофотометре UR-20 в области 400—3600 см⁻¹. БПС и модельные полимеры (0,1—4 мг) прессовали в таблетки с оптически чистым бромистым калием (800 мг) или растирали в вазелиновом масле с внутренним эталоном (полиакрилонитрилом). ИК-спектры пропионового альдегида получены в октане (концентрация альдегида 2—4 г/л), толщина кюветы 0,22 мм.

Электронные спектры растворов исследуемых полимеров в воде записаны на спектрофотометре «Speccord UV-VIS».

БПС, сополимер АК с винилисульфонатом натрия и поликарилакриловой кислотой, поликарилат натрия, поликарилакрилата получены по методикам работ [1—4] соответственно. Очистку пропионового альдегида проводили по методике работы [5]. Исходя из строения полимеров акролеина [6] и поликарилакриловой кислоты, можно предположить, что в БПС возможно присутствие следующих структурных фрагментов:

\[\text{I} \quad \text{II} \quad \text{III} \]
\[\text{IV} \quad \text{V} \quad \text{VI} \]

В ИК-спектре БПС (рисунок, a) имеются полосы поглощения при 1040, 1200, 1420, 1570 и 1710 см⁻¹. Для идентификации этих полос использованы в качестве модельных соединений поликарилакрил, бисульфитное производное поликарилакрилена, полиакрилсульфонат натрия, полиакрилат натрия, пропионовый альдегид и поликарилакриловая кислота (рисунок). Балансовые колебания групп SO₃Na находятся в областях 1040 и 1200 см⁻¹ [1], COONa при 1420 и 1570 см⁻¹ [8], C=O — при 1710 см⁻¹.

1666
Для определения групп SO₃Na в качестве аналитической выбрана полоса поглощения при 1040 см⁻¹.

В области 1710 см⁻¹ наблюдали полосы поглощения валентных колебаний альдегидных и карбоксильных групп. Тот факт, что в БПС полушрина этой полосы приблизительно такая же, как в полиакролеине и пропиловом альдегиде, а в УФ-спектрах сополимера имеются слабые максимумы поглощения в области 270 нм, характерные для π-π*-переходов альдегидных, но не карбоксильных групп, дает основание полагать, что поглощение в этой области связано с присутствием альдегидных групп.

Количество COONa-групп определяли по полосе поглощения 1570 см⁻¹ методом внутреннего эталона в вазелиновом масле, так как в КВГ эта область проявляется полосы деформационных колебаний воды [9] (внутренним стандартом являлась полоса поглощения валентных колебаний цитрильной группы в области 2245 см⁻¹).

Для интегральных интенсивностей полос валентных колебаний 1710, 1040 и 1570 см⁻¹, соответствующих группам CHO, SO₃Na и COONa в эталонных смесях (пропиловом альдегиде, полиамилсульфонате натрия и полиакрилнатрии соответственно), выполняется закон Ламбера — Бера.

Интегральные интенсивности полос в таблетках КВГ для БПС и полиамилсульфоната натрия для определения групп CHO и SO₃Na проводили по методике работы [10].

Определение COONa-групп проводили по формуле

$$A = \frac{S_n P_0}{P_n D_n}$$

где S_n — площадь полосы при 1570 см⁻¹; D_n — оптическая плотность валентных колебаний C=O при 2245 см⁻¹; P_n и P_0 — навески полимера и эталона соответственно.

Величины интенсивностей полос поглощения, соответствующих 100% образцу содержанию звеньев с группами CHO, SO₃Na и COONa, равны 102,3; 110,7 и 759,5 соответственно.

В таблице приведены содержание звеньев в БПС, определенное методами ИК-спектроскопии и элементного анализа.

Относительная ошибка определения звеньев с группами CHO, SO₃Na и COONa ±3%.

<table>
<thead>
<tr>
<th>Соотношение АР : АК в исходной смеси, мол. %</th>
<th>Содержание звеньев, вес. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>по данным ИК-метода</td>
</tr>
<tr>
<td>90 : 10</td>
<td>37,1</td>
</tr>
<tr>
<td>80 : 20</td>
<td>32,6</td>
</tr>
<tr>
<td>70 : 30</td>
<td>21,6</td>
</tr>
<tr>
<td>60 : 40</td>
<td>13,4</td>
</tr>
</tbody>
</table>
Суммарное содержание трех типов звеньев для каждого из сополимеров меньше 100%. Остаток, по-видимому, связан с присутствием в сополимерах циклических структур типа III, IV, которые данным методом не определяются.

ЛИТЕРАТУРА

Иркутский институт органической химии СО АН СССР

Поступила в редакцию 21.1.1980

SPECTROSCOPIC DETERMINATION OF COMPOSITION OF BISULFITE DERIVATIVES OF COPOLYMERS OF ACRYLALDEHYDE WITH ACRYLIC ACID

Voronkov M. G., Annenkova V. Z., Roman’kova N. P.,
Brodskaya E. I., Annenkova V. M.

Summary

The spectroscopic method of CHO, SO3Na, COONa groups determination (at their simultaneous presence) in bisulfite derivatives of copolymers of acrylaldehyde with acrylic acid with the aid of absorption IR-spectra is proposed.

УДК 541.64:543.422(4+6)

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ВИНИЛИОГРУПП В СОПОЛИМЕРАХ ДИВИНИЛСУЛЬФИДА МЕТОДАМИ ИК- И УФ-СПЕКТРОСКОПИИ

Морозова Л. В., Бродская Е. И., Тарышкина Д. С. Д.,
Анисова С. В., Трофимов В. А.

Разработан количественный метод оценки винилисульфидных групп и состава сополимеров дивинилсульфид—бутадиен-1,3 эфир. В качестве аналитических использованы полосы С=С винилиогруппы в ИК- и УФ-спектрах и полоса эфирной группы при 1100 см⁻¹. Точность спектральных определений ±0,2—0,5%.

Полимеры с,β-ненасыщенных сульфидов обладают уникальным комплексом свойств: повышенной термостойкостью, устойчивостью к действию органических растворителей, радиации, старению. Комплексообразующие свойства атома серы обусловили применение таких полимеров в качестве новообменников, экстрагентов благородных металлов, сорбентов йодидов Hg, Cu, Co [1, 2].

1668