Флори по сравнению с ММР олигомеров, содержащих как линейные, так и циклические молекулы. Следует отметить, что при статистическом расчете ММР поликонденсационного процесса циклообразование не учитывалось. Отклонение от наиболее вероятного распределения прежде всего связано с нарушением принципа равной реакционной способности, которое и приводит к сужению ММР. Наличие макроциклов не компенсирует этого сужения.

В связи с развитием метода ГПХ он был применен и для исследования ММР олигомерных полиизотилендипианитатов. Однако, поскольку разделение в этом методе основано на различиях в размерах молекул, можно было полагать, что получить корректные результаты при исследовании ММР полиэфиров окажется невозможным из-за наличия в них линейных и циклических молекул, размеры которых при одинаковой молекулярной массе будут различны. Для выяснения возможности применения ГПХ были получены зависимости Ig M от элюентного объема для линейных и циклических фракций ПДЭА. Рис. 2 показывает, что при совместном присутствии этих молекул в полиэфирах метод ГПХ не может быть применен для определения их ММР. Значительно более широкое ММР, полученное этим методом [3, 4], можно объяснить ошибкой в расчете средних молекулярных масс из гель-хроматограмм.

Таким образом, ММР олигомерных полиизотилендипианитатов является равновесным, но отличным от наиболее вероятного. Наличие в полиэфирах равновесного количества макроциклов приводит к незначительному увеличению коэффициента полидисперсности.

Всесоюзный научно-исследовательский институт синтетического каучука им. С. В. Лебедева

Поступила в редакцию 5 VIII 1976

ЛИТЕРАТУРА

1. В. И. Валычев, Р. А. Шляхтер, Н. П. Анухтина, Р. П. Тынгер, С. Г. Энгель, Высокомол. соед., А9, 200, 1967.
5. И. И. Тютчевская, Р. А. Шляхтер, Е. Г. Эренбург, Науч. П. Анухтина, Высокомол. соед., А17, 404, 1975.
8. В. И. Валычев, Р. А. Шляхтер, Н. П. Анухтина, Высокомол. соед., Б10, 147, 1968.

УДК 541.64:547.253.4

ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В ПОЛИСТИРОЛЕ ПРИ ВЗАИМОДЕЙСТВИИ С N-БУТИЛЛЛИТИМ В СРЕДЕ ТЕТРАГИДРОФУРАНА

З. А. Смирнова, Б. Д. Паттеркин,
О. В. Федоринова, А. Ф. Докукина

Реакция непрямого металлирования ПС комплексом N-бутилллития с N, N, N'-тетраметилилгидридинамином описана в [1, 2]. Нами показано, что аналогичные химические превращения возможны при взаимодействии ПС с N-бутилллитием в растворе в ТГФ [3]. Ниже приводятся результаты исследования закономерностей этой реакции.
ПС подвергали металлизации, получали анионной полимеризации на
н-бутиллине в растворе в циклогексане. Полимер, очищенный двукратным пере-
осаждением из раствора в бензоле в этанол, имел характеристики: \[\eta_0 = 0.87 \text{ даН} / \text{с} \] (бензол, 25°C); \[M_n / M_w = 1.1 \]. n-Бутиллины синтезировали по методике [4]. Реацию металлизации проводили, добавляя раствор н-бутиллина в н-тексане к расство-
ренному в ТГФ полиэфирсу. Выход литированного ПС оценивали косвенным мето-
дом по количеству продукта, полученного при обработке металлизированного ПС
твердой углекислотой, растворенной в ТГФ. Карбонизированный полимер выделяли
осаждением в подкисленный этанол, промывали горячей водой (до нейтральной
реакции), этанолом и сушили при пониженном давлении и температуре 60°C. Выход
реакции определяли гравиметрически, степень литирования — число мономерных
звеньев из 100, замещенных водородом на литий K — оценивали по количеству СООН-
групп в продукте карбонизации (кислотное число).

Синтез исходного полимера, металлизация и карбонизация проводили в тща-
тельно отрегулированной аппаратуре в токе сухого аргона. Реагенты подвергали
специальной очистке, согласно требованиям реакций с участием анионных ката-
лизаторов [5].

В качестве величин, характеризующих процесс литирования, были выбраны:
концентрация полиэфирсодержания ко времени \(t \) (\([\text{ПСLi}]\)) и эффективность литиро-
вания (ЭЛ) — отношение степени литирования, полученной экспериментально Kэксп,
к предельно возможной при заданных концентрациях полимера и n-бутиллини (Kпред), т.е.
\[\text{ЭЛ} = (K_{\text{эксп}} / K_{\text{пред}}) \cdot 100 \]

Использование ЭЛ было обусловлено тем, что литированый ПС представляет
собой макрокатализатор, который может быть применен для дальнейших превра-
щений в цепях полимеров, в частности для синтеза привитых и разветвленных
образцов. Руководствуясь данными о зависимости ЭЛ от условий реакции, можно
выбрать оптимальный режим литирования для получения образцов с заданными
параметрами разветвленности.

В работе исследовано влияние концентрации n-бутиллина, времени
выдержки и температуры на процесс литирования.

При изучении зависимости скорости литирования от начальной кон-
центрации n-бутиллина (рис. 1, а) было обнаружено, что при 25°C и [ПС]₀ =
0,2 моль/л порядок реакции близок к единице. Определив начальную ско-
рость образования полиэфирсодержания при 25, 40 и 60°C (рис. 1, б) и по-
строив зависимость \(\log v_0 = f(T) \), получим значение энергии активации
реакции литирования ПС, равное 6,3 ккал/моль при [BuLi]₀ = 0,1 и
[ПС]₀ = 0,2 моль/л.

Влияние условий реакции на ЭЛ показано на рис. 2. При концентра-
циях n-бутиллина (рис. 2, а) 0,01—0,05 моль/л, что соответствует числу
литированных звеньев 5–20 из 100, через 10 мин. эффективность литиро-
вания составляет 60–70%; наибольшее значение наблюдается за вре-
мя реакции 20 мин.; дальнейшая выдержка приводит к снижению ЭЛ.
Притем, чем выше соотношение [BuLi]₀/[ПС]₀, тем меньше ЭЛ. При увеличении концентрации n-бутиллина до 0,1 моль/л (литируется каждое
второе звено) процесс литирования замедляется, максимальное значение
ЭЛ (80%) наблюдается через 40 мин. и далее ЭЛ практически не изменя-
ется.

В характере температуро-временных зависимостей ЭЛ (рис. 2, б)
видно качественное различие при концентрациях n-бутиллина, равных
0,1 и 0,02 моль/л. Если максимальная степень литирования равна 10
(\([n-\text{BuLi}]_0 = 0,02 \text{ моль/л} \)), то при температуре выше 25°C ЭЛ со временем
резко падает (кривые 3, 4), причем кривая 4 (60°C) идет ниже кривой 3
(40°C). В случае, когда литируется каждое второе звено (\([\text{BuLi}]_0 =
0,1 \text{ моль/л} \)), при длительности процесса, не превышающей 20 мин., ЭЛ
с повышением температуры возрастает и слабо зависит от последней при
больших временах выдержки (кривые 2′–4′).

Анализ полученных данных позволяет предположить, что в среде ТГФ
в литировании участвуют сольвированные ТГФ мономерные частицы
n-бутиллиния. Реакция протекает с большой начальной скоростью, зави-
сшей от концентрации n-бутиллиния и температуры. Вполне возможно,
однако, что полученные в результате реакции молекулы полиэфирсодержа-
ния, в которых от 5 до 50% мономерных звеньев содержит литий, могут
быть ассоциированы даже в таком сильно сольватирующем растворителе, как ТГФ. Степень ассоциации, очевидно, будет определяться числом литированных звеньев в макромолекуле. Образовавшиеся полимерные ассоциаты, препятствуя литированию, могут приводить к снижению скорости процесса и уменьшению ЭЛ. Последнее может происходить также за счет ускоряющихся с температурой побочных реакций литийсодержащих соединений с ТГФ [6], что в большей степени должно влиять на ЭЛ при невысоких степенях литирования (до 20%). Все сказанное выше свидетельствует о наличии оптимальных условий (температура — время) для получения полимеров с заданной степенью ассоциации.

Рис. 1. Изменение концентрации литированного ПС во времени; [ПС]₀ = 0,2 моль/л:

а — при 25° и [БуLi]₀ = 0,01 (1), 0,02 (2) и 0,05 моль/л (3); б — при 25° (1), 40° (2), 60° (3) и [БуLi]₀ = 0,1 моль/л

Рис. 2. Влияние начальной концентрации β-бутиллита (а) и температуры (б) на ЭЛ полиэтилена; [ПС]₀ = 0,2 моль/л:

а — при 25° и [БуLi]₀ = 0,01 (1), 0,02 (2), 0,05 (3) и 0,1 моль/л (4); б — при 0° (1), 25° (2, 3), 40° (4, 5), 60° (6, 7) и [БуLi]₀ = 0,02 (3—4) и 0,1 моль/л (7—8)

Рис. 3. ИК-спектр (разностный) пленки карбонизированного образца относительно ПС

Достижения наибольшей эффективности литирования при соответствующих задаваемых степенях литирования. Это положение было подтверждено нами при синтезе модельных образцов разветвленного ПС [3].

Продукты карбонизации литированного ПС исследовались методом ИК-спектроскопии. Поглощение, связанное с колебаниями группы С=О (1720—1740 см⁻¹), хорошо видно в разностном спектре пленки карбонизированного образца (рис. 3). Спектры растворов из-за плохой растворимости исследуемых образцов оказались менее характерными — наблюдалось изменение поглощения в области 800, 1100—1200, 1400—1600 и 3200—3400 см⁻¹ по сравнению с поглощением исходного ПС.
Присутствующая в спектре полоса 780 см\(^{-1}\), соответствующая колебаниям в диаметрально бензолном кольце, подтверждает высказанное ранее предположение о том, что замещение водорода на литий происходит в пара- или орто-положении [2]. Полоса поглощения в области 800 см\(^{-1}\) наблюдалась нами также в спектре продукта карбонизации литированного поли-α-этилстирола, т. е. при взаимодействии α-бутиллития с поли-α-метилстиролом литируется бензольное кольцо.

Молекулярная масса ПС, судя по величине характеристической вязкости, при литировании не изменяется, что свидетельствует об отсутствии процессов деструкции полимера.

Ленинградский политехнический институт Поступила в редакцию им. М. И. Калинина 18 VIII 1976

ЛИТЕРАТУРА

3. Б. М. Домарец, В. А. Смирнов, В. П. Бушков, А. Ф. Докучаева, Г. А. Оградина, В. Д. Пяткин, Л. Л. Сухаренко, Пласт. массы, 1975, № 2, 34.

УДК 541.64:542.61

СОРЕБЦА ПАРОВ ПОЛЯРНОГО МОНОМЕРА
И РАСТВОРИТЕЛЕЙ СЕТОЙ ПОЛИИЗОЦИАНАТА

Л. М. Калюжная, Л. С. Андрянова, Ж. Д. Черных, Г. П. Белоновская, С. Я. Френкель

Новый тип взаимопроникающих (на молекулярном уровне) полимерных сеток (ВПС) получен [1] двухстадийной полимеризации смеси динозицианатов (M\(_1\)) с полиарными мономерами (M\(_2\)) в присутствии катализаторских систем на основе третичных аминов. В этих ВПС совмещаются жесткая трехмерная полиизоцианатная сетка и линейный полярный полимер, образующийся при полимеризации M\(_2\). Оптически прозрачные аморфные ВПС на основе динозицианатов могут быть получены только при использовании в качестве M\(_2\) полярного мономера (алкиленсультфиды, акриловые эфиры, акрилонитрил и др.). В неполярных средах полиизоцианаты выделяют из раствора, а с неполярными мономерами образуют непрозрачные, грубодисперсные ВПС. Таким образом, образование топологически совместимых сетчатых систем связано с особым типом укладки компонентов и определяется в первую очередь структурой полиизоцианатной сетки и взаимодействием полярных групп сетки и второго полимера.

Представлялось целесообразным привлекать для изучения ВПС метод сорбции паров растворителей, который в принципе позволяет получить информацию о взаимодействиях макромолекулярных цепей друг с другом в ходе образования ВПС как на первой стадии образования сетки, так и на второй [2]. Как было показано [1], комплекс свойств ВПС зависит от исходного соотношения M\(_1\) и M\(_2\), поэтому предполагалось, что исследование сорбции паров полярного и неполярного растворителей и полярного мономера полиизоцианатной сеткой, полученной при различном исход-