ОПРЕДЕЛЕНИЕ КРИВЫХ РАСПРЕДЕЛЕНИЯ ПО КОЭФФИЦИЕНТАМ СЕДИМЕНТАЦИИ ДИСПЕРСНЫХ ПОЛИМЕРОВ

И. Е. Некрасов

Проведено сопоставление характеристик распределений по коэффициентам седиментации ПС в циклогексане, 34° и поли-(α-фенилен) изофталамид в ДМФ - 0,25% LiCl, 25°, определенных тремя методами: 1) экстраполяционным, 2) одноночным на основе математической формализации экстраполяционных процедур и 3) одноночным на основе теории, учитывающей гидродинамические взаимодействия компонентов. Показано, что обстоятельства экстраполяционных кривых q(S) вызываются нечетом эффектов Дюстона — Остона, и при анализе седиментационных данных полиинсперсных полимеров обязательно необходимо учитывать гидродинамические взаимодействия компонентов.

В работе [1] на основе анализа седиментационных данных для средних и слабо-дисперсных полимеров показано, что перекрестные гидродинамические взаимодействия (эффекты типа Дюстона — Остона (ДО)) приводят к уширению распределений q*(S, t) (S — коэффициент седиментации, t — время) и увеличению концентрационной зависимости коэффициентов седиментации для низкомолекулярных и уменьшению — для высокомолекулярных компонентов неоднородных полимеров по сравнению с аналогичными зависимостями для фракций. Принимая во внимание общепринятую теорию Тротмана [2] ЭДО для бинарной смеси, концепцию локальной концентрации и принцип аддитивности парных взаимодействий компонентов гетерогенной смеси, в работе [3] предложена теория учета перекрестных взаимодействий компонентов при седиментации полидисперсного полимера. Расчет распределения по коэффициентам седиментации q(S) (S0 — константа седиментации) выполняется по следующим формулам:

\[ S_{i+} = \ln r_i \{ 1 + m(r_i-1) \}/2\omega t \quad r_i = (x_i/x_0)^2 \quad m = \frac{1}{2} \mu \rho_0 x_0^2 \omega^2 \]  

(1)

\[ R\Delta x \sum_{i=1}^{\infty} Z_i y_i = c_0 \quad y_i = r_i/[1 + m(r_i-1)] \]  

(2)

\[ c_i^* = R\Delta z Z_i \]  

(3)

\[ S_{i+} = S_i \left( 1 + \sum_{j=1}^{i} k_j c_j \right) \]  

(4)

и

\[ S_{i-} = S_i \left( 1 + \sum_{j=1}^{i-1} c_j[\eta]_j \right) (1+k_i c_i) \]  

(5)

В случае линейных зависимостей

\[ k_i = \pm a + \beta S_{i0} \]  

(6а)

\[ k_i = a - \beta S_{i0} \]  

(6б)

вместо уравнения (4) получаем

\[ S_{i+} = S_i \left( 1 + \sum_{j=1}^{i-1} k_j c_j \pm ac_i \right) \big/ \left( 1 \pm S_{i0} \beta c_i \right) \]  

(7)

\[ c_{i(j)}^* = c_{i(j)}^* (y_i^2-y_j^2)/[y_i^{(1-\psi_{ij})} - 1] \quad i<j \]  

(8)

\[ \psi_{ij} = S_{i0}/S_{j0} \]  

(9)

\[ \nu_{ij}^0 = c_{i(j)}^* y_i + c_{j(i)}^* y_j - \nu_{ij} \]  

(10)

910
В этих соотношениях $x_i$, $x_0$ — координаты соответственно $i$-го компонента и метки, $\rho_s$ — плотность растворителя, $\omega$ — угловая скорость вращения ротора ультрацентрифуги, $\mu$ — параметр давления, $Z_i$ — смещения, получаемые при помощи обычной рефрактометрической оптики, $R$ — приборная константа, $\Delta x$ — шаг координации в седиментограмме, $c_i$, $c_0$, $c_i^0$ — концентрация $i$-го компонента в исходной смеси, рассчитанная с учетом взаимодействия $i$-м компонентом, исходная концентрация $i$-го компонента и общая концентрация соответственно, $[\eta]_i$ — характеристическая вязкость $i$-го компонента; звездочкой помечены кажущиеся (ненаправленные) величины.

$$c_i^0 = \sum_{j=1}^{q} c_i^{(j)}/(q-1) \quad j \neq i$$
$$q_i(S_{0b}) = c_i^0/[1+m(r_i-1)]$$

Учет ЭДО дает не только новую серию формул для вычисления $q_i(S_{0b})$, но и позволяет по-новому рассмотреть некоторые проблемы седиментационного анализа.

На рис. 1 изображены кривые $q_i(S, t)$ образца ПС, $c=0.3016$ с/д., $\omega$ = 40 000 об/мин, время $t$, сек.: 1 — 887, 2 — 1437, 3 — 3287

![Diagram](image)

Рис. 1. Кривые $q_i^0(S, t)$ образца ПС, $c=0.3016$ с/д., $\omega$ = 40 000 об/мин, время $t$, сек.: 1 — 887, 2 — 1437, 3 — 3287

Учет ЭДО дает не только новую серию формул для вычисления $q_i(S_{0b})$, но и позволяет по-новому рассмотреть некоторые проблемы седиментационного анализа. На рис. 1 изображены кривые $q_i(S, t)$ образца ПС, $c=0.3016$ с/д., $\omega$ = 40 000 об/мин, время $t$, сек.: 1 — 887, 2 — 1437, 3 — 3287. Таким образом, в процессе седиментации исчезает высокоомолекулярный «хвост» ММР, и это исчезновение нельзя объяснить разбавлением или уменьшением концентрации в области плато. Концепция ЭДО позволяет сравнительно просто объяснить это явление.

Картина движения компонентов смеси такова. В начальный момент времени низкомолекулярные фракции остаются на месте, поскольку для них среда с высокоомолекулярными фракциями вызывает повышенное гидродинамическое сопротивление, и, наоборот, для высокоомолекулярных фракций низкомолекулярные компоненты представляют среду с пониженным гидродинамическим сопротивлением. В областях, оставленных большими молекулами, происходит увеличение скорости движения малых молекул, при этом перемещающаяся граница выполняет роль своеобразной запруда (плато), и концентрация низкомолекулярных компонентов возрастает, что приводит к относительному уменьшению концентрации высокоомолекулярных компонентов. Статистическая природа процессов получения полимеров [7, 8] для многих вариантов синтеза проявляется в существовании «хвостов» ММР, для которых характерно уменьшение относительной дольи фракции при увеличении молекулярной массы. Именно эти фракции исчезают за счет перекрестных взаимодействий компонентов, а количество высокоомолекулярных фракций увеличивается. С течением времени это приводит к сдвигу максимума в сторону меньших $S$ (рис. 1).

* При расчете этих кривых для коэффициентов седиментации введена поправка на разбавление в соответствии с работой [6].
При определении ММР сильнополидисперсных полимеров методом фиксированной координаты [9] было обнаружено возрастание высоты максимума на кривых $q(S, t)$ ПЭ в а-бромнафталине, 110°, по мере удаления фиксированной координаты от линии начала седиментации. Все дело в том, что смещение (и концентрация) при различных фиксированных координатах отвечают различным стадиям процесса седиментации. Чем дальше координата от линии начала седиментации, тем сильнее должны проявляться перекрестные взаимодействия (формула (8)) и тем выше максимум кривых $q(S, t)$ ПЭ, отвечающих достаточно низкомолекулярным компонентам. Эти результаты указывают на то, что при седиментации сильнополидисперсных полимеров ЭДО происходит выделение, и именно поэтому без учета этого эффекта вряд ли можно правильно определить содержание низкомолекулярных соединений в полимере [10].

Таблица приведены характеристики распределений $q(S_0)$ образцов ПЭ в циклогексане (ПГ), 34° в диметилформамиде (ДМФ) - 0,25% LiCl, 25°, рассчитанных по одному снимку по теории, учитывающей ЭДО (формулы (1) и (12)) (способ I), и по способу [4, 5], основанному на матема-

| $S_0$ | $p$ | $S_0$ | $p$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Среднее</td>
<td>14,1</td>
<td>4,48</td>
<td>15,1</td>
</tr>
<tr>
<td>0,7110</td>
<td>3,02</td>
<td>4,20</td>
<td>5,12</td>
</tr>
<tr>
<td>0,3016</td>
<td>0,887</td>
<td>19,0</td>
<td>1,487</td>
</tr>
<tr>
<td>0,1142</td>
<td>1,22</td>
<td>6,24</td>
<td>1,82</td>
</tr>
<tr>
<td>Среднее</td>
<td>17,4±0,8</td>
<td>6,3±0,3</td>
<td>16,4±1,0</td>
</tr>
</tbody>
</table>

** ПФИА в ДМФ - 0,25% LiCl, 25°

| $S_0$ | $p$ | $S_0$ | $p$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,110</td>
<td>1,92**</td>
<td>2,88</td>
<td>0,838</td>
</tr>
<tr>
<td>0,990</td>
<td>1,394</td>
<td>2,94</td>
<td>1,051</td>
</tr>
<tr>
<td>0,090</td>
<td>3,933</td>
<td>3,13</td>
<td>1,059</td>
</tr>
<tr>
<td>Среднее</td>
<td>3,62</td>
<td>1,264</td>
<td>3,78</td>
</tr>
</tbody>
</table>

Вычисления невозможны

* Из усреднения исключены $c=0,711$ и первый снимок $c=0,3016$ (пояснения в тексте), а для ПФИА $c=0,11$ и второй снимок ($t=2,493\cdot10^3$ сек) $c=0,99\ z/da$.

** Первые снимки всех концентраций ПФИА служили лишь для определения конца кривой $q(S)$ (пояснения в тексте).
тической формализации экстраполяционных процедур (способ II), т. е. на эмпирических значениях диффузионного параметра \( K = S_0D_0 = SD \) (\( D \) - коэффициент диффузии) и эмпирических функциях (6а, 6б) [1]. Детали проведения опытов и расчетов содержатся в работах [1, 5, 6].

При расчетах первым способом (формулы (1)–(12)) распределения \( q^*(S) \) вначале исправляются на концентрационную зависимость коэффициентов седиментации, давление, ЭДО, разбавление, а затем вводится (для \( c = 0 \)) поправка на диффузию по теоретическому значению параметра \( K \) [1] (обозначения общепринятые)

\[
K = S_0D_0 = \frac{RT(1-\bar{\rho})}{N_\Lambda^2P\eta^2} \left( \frac{M}{h_0^2} \right)
\]

Для полимера поправка на зависимость \( k_1(S_\infty) \) вводилась по уравнению (6а) \((a = 0, b = 0.036 \Delta \lambda/e)\), для обоих способов. Разумеется, вычислительный алгоритм был в этих случаях разным, поскольку исходные концепции диаметрально противоположны (локаальная и плотно-концентрация). А коэффициенты седиментации ПФИА исправлялись на концентрационную зависимость по различным соотношениям: способ I (учет ЭДО), за основу взяты данные по фракциям \( k_1 = 0, S_\infty < 0.75; k_1 = -1.11 + 1.48 S_\infty, S_\infty > 0.75 \) (ед. сведенберга); способ II, по данным нефракционированных образцов: \( k_1 = 2.12 S_\infty \).

Как уже упоминалось, перекрестные взаимодействия компонентов неоднородного по массе образца приводят к потере «воста» распределения. Теория [3] даёт довольно любопытную возможность реконструкции конца кривой \( q(S_\infty) \). Для этого будем считать истинным конец распределения точку, полученную при малых временах ультрацентрифугирования. На рис. 1 для кривой \( 3 \) это будет точка \( I \). Поскольку для большинства концентраций образцов ПС и ПФИА не проводили расчёты диффузионного смещения концов распределений \( q^*(S_\infty, t) \), то за истинный конец кривых брали точку на середине отрезка \( 3-I \). В дополнение к \( q \) графическим фракциям (с концентрациями \( c_i > 0 \)) в память ЭВМ вводится \( n \) пропахших компонентов (с концентрациями \( c_i = 0, i > q \)). Здесь следует оговориться, что расчеты выполняются при помощи ЭВМ, и математическая сложность не является препятствием для определения \( q^*(S_\infty) \). Вычисления при помощи формулу (8–11) дают незначительные концентрации для пропахших компонентов.

На рис. 2 кривая \( q(S_\infty) \) ПС в ЦГ, \( c = 3016 \) с реставрированным «востом» рассчитана при значениях \( q = 26 \) и \( n = 6 \). Разница между распределениями \( q(S_\infty) \), определёнными с дополнительными нулевыми компонентами и без них, невелика, однако способ [4, 5] дает сильно заостренное распределение, значительно отличающееся от упомянутых. Можно указать три причины подобного заострения. Во-первых, потеря «воста» в методе [4, 5] носит необратимый характер. Во-вторых, диффузионный вклад в расширение границы сильно преувеличен за счет ЭДО [1]. В-третьих, при значительный диффузия становится заметны искажения кривых \( q(S_\infty) \), вследствие расхождения моделей (гауссова функция) с реальным распределением \( q^*(S, t) \), в то время как при малой диффузии эти расхождения не играют роли [11].

Общепринятые экстраполяционные процедуры [12] приводят к следующим характерным распределениям \( q(S_\infty) \) исследованных образцов: ПС, \( S_\infty = 15.7, p = 3.80 \) (ед. сведенберга); ПФИА, \( S_\infty = 3.6, p = 0.98 \) (ед. сведенберга). Сопоставление с данными таблицы подтверждает уже давно известную исследователем
истину, что экстраполяция кривых $q(S)$ среднеполидисперсных полимеров (ПС) приходит к потере многих деталей распределений (например, слаборазрешенными максимумов), "хвоста" и заострению распределений (ср. значение $P1$).

Данные для слабополидисперсного полимера ПФИА вроде бы находятся в полном соответствии при разных способах вычисления (таблица), однако вторым способом оказались невозможным определить $q(S_0)$ для всех смесей $c=0,11 s/da$ и для первого снимка $c=0,09 s/da$, в то время как расчеты по теории [3] осуществимы для всех $c$ и $t$.

Некоторое понижене $S_0$ при расчетах первым способом вызывается, по-видимому, двумя обстоятельствами. Во-первых, теория [3], строго говоря, относится к идеальным системам. Результаты исследования ЭДО бинарных смесей в хорошем растворителе свидетельствуют о том, что теория [2] в этом случае количественно подтверждается только в пределе $c=0$ [13]. Скорее всего для ПФИА вычислительный алгоритм должен основываться не на соотношении (4), а на соотношении (5). Во-вторых, первый снимок проводился слишком поздно, и часть "хвоста" терялась. Особенно это заметно по $c=0,11 s/da$.

Симптоматично, что характеристики распределений $q(S_0)$, вычисленных первым способом, имеют меньший разброс, чем аналогичные величины, вычисленные вторым способом. Все результаты, полученные по соотношениям (1)–(12), следует рассматривать как предварительные: они могут быть значительно улучшены, в то время как расчеты по методике [4, 5] практически невозможно улучшить. Этот подход сохраняет часть недостатков, свойственных в целом методу экстраполяции распределений, опирающегося на целый ряд произвольных допущений: простая аддитивность действующих факторов и движения компонентов, неучет перекрестных взаимодействий компонентов, концентрация плато-концентрация. Более правильным представляется подход, связанный с учетом ЭДО и концентраций локальной концентрации [3].

Всесоюзный научно-исследовательский институт синтетических волокон

Поступила в редакцию 29 VI 1976

ЛИТЕРАТУРА

1. И. К. Некрасов, К. Г. Хабарова, Н. П. Никитина, Высокомол. соед., A18, 778, 1976.
5. И. К. Некрасов, Высокомол. соед., A17, 439, 1975.