ВЗАИМОДЕЙСТВИЕ ЖЕЛАТИНЫ И АЛЬГИНАТА НАТРИЯ В ВОДНОЙ СРЕДЕ

Е. С. Вайнерман, В. Я. Гринберг, В. В. Толстогузов

Турбидиметрическим методом исследовано взаимодействие желатины и альгината натрия при pH < 4,90 в области малых концентраций полимеров. Показано, что при pH < pI желатины система желатина — альгинат натрия — H₂O расслаивается на две фазы: равновесную жидкость и комплексный коагулят. На основании сопоставления данных турбидиметрии и потенциометрии, а также изучения действия нейтральной соли и мочевины показано, что комплексная коагуляция в исследуемой системе может быть рассмотрена как двухстадийный процесс. Первая стадия заключается в электростатическом взаимодействии противоположно заряженных макрополимеров желатины и альгината с образованием электронейтрального комплекса. Второй стадией процесса является агрегация электронейтральных комплексов с образованием новой фазы — комплексного коагулята.

В работах [1, 2] показана целесообразность применения смесей желатины и альгината натрия в определенных типах искусственных продуктов питания. На основе этих смесей можно готовить студни с резко отличными свойствами. Так, введение в систему желатина — альгинат натрия — H₂O солей кальция при pH выше изоэлектрической точки (pI) желатины приводит к образованию несплавных гидрофильных студней. В то же время показано, что при pH 3,5 эта система в присутствии солей кальция образует термообратимые студни при температурах ниже 40–50°. Эти аномалии могут быть следствием взаимодействия противоположно заряженных макрополимеров желатины и альгината при pH < pI желатины, известного как комплексная коагуляция [3, 4].

В данной работе приводятся некоторые результаты исследования комплексной коагуляции в системе желатина — альгинат натрия — H₂O в области малых концентраций полимеров. Можно ожидать, что выявленные закономерности сохраняются в общих чертах при переходе к более концентрированным системам.

Экспериментальная часть

В качестве объектов исследования использовали оцищенную по Лебу [5] денатурированную желатину [8] с рI 4,9 и альгинат натрия фирмы «British Drug Houses». Молекулярный вес полимеров, определенный из коэффициента диффузии и характеристической вязкости по методу [7], составил для желатины — (3,0±0,5)·10⁵ (2 М раствор KSCN; 25°) и для альгината натрия — (1,5±0,2)·10³ (фосфатный буфер, pH 7,45; 25°).

Растворы желатины и альгината натрия готовили по весу, исходя из концентрированных растворов, концентрация которых была определена методом высушивания до постоянного веса при 90–100°.

Методика эксперимента состояла в следующем. Растворы желатины и альгината натрия одинаковой концентрации (~10⁻²–10⁻³ г/100 г) титровали до одинакового pH и смешивали непосредственно в оптической кювете. Наблюдавшееся при этом увеличение оптической плотности измеряли на спектрофотометре СФД-2 при 400 нм.

Потенциометрическое титрование 0,5 н. раствором HCl производили на авто-
Результаты и их обсуждение

Достаточно концентрированная система желатина — альгинат натрия — H₂O (~1 г/100 г) при pH > pI желатины расслаивается на две фазы, одна из которых (равновесная жидкость) обеднена, а другая (комплексный коагулят) обогащена каждым из полимеров. Смещение же растворов желатины и альгината натрия при суммарной концентрации cₙ < 8·10⁻³ г/100 г сопровождается только погугтением системы без видимых признаков макрослоения. Оптическая плотность резко возрастает в первые 5—10 мин. и остается практически постоянной в течение длительного промежутка времени (рис. 1). Однако в ультрацентрифуге при 140,000 g за 10—15 мин. происходит разделение системы на прозрачную равновесную жидкость и осадок — комплексный коагулят.

Оптическая плотность при постоянных pH и соотношении концентраций полимеров линейно зависит от cₙ до cₙ = 7·10⁻² г/100 г. В области линейной зависимости один и те же значения оптической плотности были получены при смещении растворов желатины и альгината натрия с определенной cₙ и при разбавлении более концентрированной смеси до этой

\[c_* = c_{WH} + c_A, \] где cₙ и c_A — концентрации желатины и альгината в смеси.
Рис. 3. Зависимость оптической плотности от условной весовой доли желатины $W = c_м / c_с$, при нескольких значениях рН и $c_с = 4 \times 10^{-4}$ г/100 см.; рН = 2,05 (1), 3,40 (2), 3,00 (3), 3,80 (4), 4,0 (5), 4,20 (6), 4,50 (7).

же концентрации (рис. 2). Кроме того, как было показано методом спектра мутности, размер рассеивающих частиц в указанных условиях равен 6000–8000 Å независимо от $c_с$ в области $c_с \leq 6 \times 10^{-4}$ г/100 см [10].

Следовательно, при $c_с \leq 6 \times 10^{-4}$ г/100 см система желатина — альгинат натрия представляет собой коллоидный раствор с частицами комплексного коацервата в виде дисперсной фазы. Размер частиц при этом остается постоянным, и оптическая плотность пропорциональна только их концентрации в системе, что позволяет рассматривать оптическую плотность как эквивалент концентрации частиц комплексного коацервата в системе.

Согласно Бейсу [11–14], первой стадией комплексной коацервации является электростатическое взаимодействие между макролионом и макроанионом с образованием электронейтрального комплекса. Вторая стадия этого процесса заключается в агрегации электронейтральных комплексов с образованием коацерватной фазы.

Применимость к нашему случаю и учитывая, что при рН > 2,6 заряд альгината больше заряда желатины, процесс образования электронейтрального комплекса можно представить как реакцию

$$A^{-\infty}A^1 + N^iK^{+\infty}K^\rightarrow A^iK^\rightarrow N^iK^\rightarrow -12A^1,$$

где $Z_{к} и Z_{с}$ — заряды макролионов желатины и альгината натрия, соответственно, при данном рН и $N = |Z_{с}/Z_{к}|$. Дальнейшая агрегация $A^iK^\rightarrow N^iK^\rightarrow -12A^1$ приводит к образованию новой фазы — собственно комплексного коацервата. Отсюда вытекает возможность допустить эквивалентность между оптической плотностью и выходом электронейтрального комплекса.

На рис. 3 представлены зависимости оптической плотности системы от условной весовой доли желатины — $W = c_м / c_с$, при нескольких значениях рН и $c_с = 4 \times 10^{-4}$ г/100 см. Каждому значению рН соответствует определенная величина максимальной огранчительной плотности D_{max}, соответствующая максимальному выходу комплексного коацервата.

Зависимость D_{max} от рН также экстремальна, при этом максимальная величина наблюдается при рН 3,8 (рис. 4).

Естественно допустить, что при данном рН максимальный выход электронейтрального комплекса (или комплексного коацервата) достигается при соотношении концентраций полимеров, соответствующем их эквивалентности, т. е. удовлетворяющему уравнению

$$Z_{к}c_{к}^k + Z_{с}c_{с}^k = 0,$$

где $c_{к}^k и c_{с}^k$ — концентрации макролионов желатины и альгината в комплексном коацервate.
Рис. 4. Зависимость $D_{\text{макс}}$ (1) и величины модуля произведения зарядов $|Z_{A}Z_{Ж}|$ в условных единицах (2) от pH

Рис. 5. Кривые титрования:
1 — желатины (N — число связанных протонов); 2 — альгината натрия (N — разность между максимально возможным и фактическим числом связанных протонов)

Рис. 6. Зависимость величины соотношения концентраций полимеров $c_{ж}/c_{A}$ по уравнению (1) (1) и значений $c_{ж}/c_{A}$, соответствующих $D_{\text{макс}}$ (2) от pH

Рис. 7. Зависимость оптической плотности от концентрации NaCl ($c \cdot 10^5$) (1) и мочевины (2), $c_{ж}=4,0 \cdot 10^{-3}$ м/л при pH 4,0 и $c_{ж}/c_{A}=6,15$

Сопоставление величин $c_{ж}^{k}/c_{A}^{k}$, рассчитанных по уравнению (1), где $Z_{ж}$ и Z_{A} взяты из кривых титрования, приведенных на рис. 5, и экспериментальных, соответствующих $D_{\text{макс}}$, показывает хорошую сходимость (рис. 6). Это подтверждает справедливость предположения об электронейтральности комплексов, образующих дисперсию фазу — комплексный коацерврат.

Можно предположить, что константа образования электронейтрального комплекса является величиной, пропорциональной произведению зарядов

255
взаимодействующих макроионов [15]. Как видно из рис. 4, зависимость модуля произведения зарядов желатины и альгината от pH носит экстремальный характер, что соответствует симбатному изменению константы образования электронейтрального комплекса и объясняет вид зависимости $D_{вмкс}=f(pH)$.

Введение NaCl или мочевины приводит к заметному уменьшению оптической плотности, обусловленному растворением комплексного коацервата (рис. 7).

По-видимому, присутствие в системе нейтральной соли приводит к экранированию зарядов макроионов и делает невозможным образование электронейтрального комплекса.

Влияние мочевины может свидетельствовать об участии в процессе образования комплексного коацервата водородных связей. Но так как при образовании электронейтрального комплекса последние вряд ли играют существенную роль, остается предположить их участие в процессе агрегации электронейтрального комплекса.

Институт элементоорганических соединений АН СССР

Поступила в редакцию 5 VIII 1971

ЛИТЕРАТУРА

5. Ж. Ребе, Белки и теория коллоидных явлений. Гиалогром, 1932, стр. 52.