ИССЛЕДОВАНИЕ СКОРОСТИ ТЕРМООКИСЛИТЕЛЬНОЙ ДЕСТРУКЦИИ ПЕНТАПЛАСТА В ЗАВИСИМОСТИ ОТ СПОСОБА ПОЛИМЕРИЗАЦИИ

С. С. Хинькис, Т. В. Крейцер, А. Т. Емельянова, Л. Г. Вать

Ранее было показано [1, 2], что термоокислительная деструкция пентаплаза, полученного как на катализаторе BF₃ (пентапласт I), так и на Al(C₂H₅)₃ (пентапласт II), может быть описана единой схемой и развивается как цепной радикальный процесс с выраженным разветвлением. Однако скорость процесса окисления для пентапласта II ниже, и эффективная энергия активации процесса составляет 33,6 ккал/моль вместо 26,4 ккал/моль, вычисленной для пентапласта I.

В настоящей работе исследована структура пентаплаза в зависимости от способа полимеризации с целью объяснения различий в кинетике процесса окисления.

Экспериментальная часть

Методика окисления пентаплаза описана в [1—3]. Исследовали образцы пентаплаза, полученного в растворе на катализаторе BF₃ (пентапласт I) и на катализаторе Al(C₂H₅)₃ (пентапласт II), а также на триэтилалюминии в боке (пентапласт II-a). В пентапласте I остатки катализатора отсутствуют, а у пентапласта II и II-a зольность составляла соответственно 0,4—0,5 и 0,07—0,12%.

Плотность пленок пентаплаза определяли методом флотации в смеси бромоформа и ксилона. Фракционирование выполняли методом осадительной хроматографии с насадкой из кварцевого песка. Экскирование осуществляли смесью циклогексанона — диэтиленгликоль различного состава при температуре 117° и скорости проколания жидкости 150 мл/час.

ИК-спектры получены на спектрофотометре Н-800 фирмы «Hilger».

Результаты эксперимента и их обсуждение

Величина индукционного периода поглощения кислорода при 150° (рис. 1), а также изменение приведенной вязкости, веса полимера и наполнения карбонильных групп (рис. 2) показывают, что стабильность полимера возрастает в ряду: пентапласт I < II-a < II.

Для объяснения этих различий исследовали влияние остаточной зольности, молекулярно-весового распределения и структурных особенностей пентапластов I, II и II-a на кинетику процесса окисления. Показано [2], что большая стабильность пентапласта II не связана с наличием остатков катализатора. Искусственное введение золь в пентапласт I не привело к повышению его стабильности.

По молекулярно-весовому распределению исследуемые образцы различаются незначительно (рис. 3).

Структуру образцов пентаплаза, полученных в разных условиях полимеризации, изучали с помощью ИК-спектроскопии.
ИК-спектр пентапласта очень сложен, так как в блоке полимера одновременно содержатся аморфные области и кристаллические области двух типов (α и β) [4]. В настоящей работе для отнесения полос в ИК-спектре исследовали образцы полимера с различной предысторией. «Аморфные» полосы поглощения (1310, 1367, 1438 см⁻¹) и «кристаллическая» полоса 1384 см⁻¹ выделены благодаря излучению ИК-спектра расщепля (рис. 4).

Рис. 1. Кинетические кривые поглощения кислорода при 150° пентапластам I (1), II-α (2) и II (3)

Рис. 2. Изменение веса полимера (а), приведенной вязкости (б) и интенсивности (K) полосы поглощения 1730 см⁻¹ (в) при 150° для пентапластов I (1), II-α (2) и II (3)

Циклических колебаний С—Н, соответствующих кристаллическим модификациям α и β. Благодаря сопоставлению ИК-спектров пленок, полученных после отжига или закалки, нам удалось отнести полосы поглощения, характерные для α- и β-форм. Полоса 1315 см⁻¹ относится к β-форме, а полосы 1322 и 1462 см⁻¹ соответствуют α-форме (рис. 5). Относительное содержание α и β кристаллических модификаций оценивали по интенсивности полос 1322 и 1315 см⁻¹ и сопоставляли с измерениями плотности тех же образцов (таблица). Оказалось, что оценка кристалличности пентапласта по его плотности затруднена различием в плотности двух кристаллических модификаций. Это обнаруживается, если сравнить плотность образцов с соотношением интенсивности кристаллической и аморфной полос в ИК-спектре (D₁₃₂₂/D₁₄₆₂), которое является мерой кристалличности независимо от конформационного состава кристаллической части.

Сопоставление кристалличности, рассчитанной из плотности (интерполицией известных из литературы значений плотностей кристаллической [5] и аморфной [6] фаз) и из ИК-спектров (в относительных единицах), приведено на рис. 6. Значения кристалличности, рассчитанные из плотности,
для полимера с преобладанием β-формы всегда выше. Соотношение степеней кристалличности, измеренной по плотности и по ИК-спектрам, описывается для двух кристаллических модификаций α и β прямыми 1 и 2 (соответственно). После прогревания при 175° и медленного охлаждения образцов, полученных из раствора в циклогексаноне, т. е. при переходе β-формы в

![Diagram](image1.png)

Рис. 4. ИК-спектр пленки пентапласти, полученный из раствора (1), из расплава при 190° (2) и после медленного охлаждения (3)

![Diagram](image2.png)

Рис. 5

Рис. 6

Поглощение

![Diagram](image3.png)

Рис. 5. ИК-спектр пентапластов I (α) и II (β). Образцы получены из раствора в циклогексаноне (1) и отожжены (2) (K — оптическая плотность)

Рис. 6. Зависимость степени кристалличности, определенной по плотности (А) и по ИК-спектрам (B) пентапласти: 1 — преобладает α-форма,

2 — преобладает β-форма

α-форму (рис. 5), значения кристалличности, рассчитанные из плотности ρ, перемещаются с прямой 2 на прямую 1.

Из приведенных результатов можно сделать вывод, что β-кристаллическая модификация обладает большей плотностью. Поэтому достоверно оценивать степень кристалличности пентапласти по плотности можно только с учетом относительного содержания α- и β-форм для данного образца.

В настоящее время не установлено, сколько существенные отличия конформации цепи при упаковке в кристаллических модификациях α- и β-форм, а также в аморфной фазе пентапласти. Известно, что при закалке с последующей кристаллизацией образуется β-кристаллическая модификация. Однако, как показали наши опыты, при медленной кристаллизации из раствора ИК-спектр пентапласти также соответствует β-форме. Исследование ИК-спектров и плотности пентапласти сразу после закалки и через

2016
недель выдержки при 20° показывает (таблица), что макромолекулы после закалки находятся в конформации β (с большей плотностью), а последующая кристаллизация изменяет эту плотность незначительно. Таким образом, оказалось, что модификации α и β отличаются не только числом макромолекул в элементарной ячейке [5], но, главным образом, формой макро-

Плотность пленок пентапласта, полученного разными методами

<table>
<thead>
<tr>
<th>Способ нагревания пленок</th>
<th>Способ охлаждения расплава</th>
<th>(\rho, (\text{г/см}^3)) пентапласта, полученного в растворе на (\text{BF}_3)</th>
<th>в растворе на (\text{Al(C_2H_5)_3})</th>
<th>в блоке на (\text{Al(C_2H_5)_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прессование при температуре 175—180°</td>
<td>Закалка при —75°</td>
<td>1,398</td>
<td>1,415</td>
<td>1,411</td>
</tr>
<tr>
<td></td>
<td>Спустя неделю после закалки (при 20°)</td>
<td>1,406</td>
<td>1,417</td>
<td>1,415</td>
</tr>
<tr>
<td></td>
<td>Медленное охлаждение</td>
<td>1,407</td>
<td>1,413</td>
<td>1,412</td>
</tr>
<tr>
<td></td>
<td>Испарение в воздухе, затем в вакууме при 40—50°</td>
<td>1,440</td>
<td>1,442</td>
<td>1,441</td>
</tr>
<tr>
<td>Охлаждение из 2%-ного раствора в циклогексаноне</td>
<td>Прогревание до 175—180°, выдержка 15 мин. с последующей закалкой при —75°</td>
<td>1,429</td>
<td>1,432</td>
<td>1,430</td>
</tr>
<tr>
<td></td>
<td>Спустя неделю после закалки (при 20°)</td>
<td>1,430</td>
<td>1,437</td>
<td>1,433</td>
</tr>
<tr>
<td></td>
<td>Прогревание до 175—180° и медленное охлаждение</td>
<td>1,409</td>
<td>1,412</td>
<td>1,410</td>
</tr>
</tbody>
</table>

молекул, как это предполагали в работе [4]. Именно этот факт, по-видимому, определяет возможность оценки содержания α- и β-форм по ИК-спектрам и по плотности, а полосы поглощения 1315 и 1322 см\(^{-1}\) в ИК-спектре пентапласта являются «конформационными».

Мы предположили, что различия в плотности и в ИК-спектрах образцов пентапластов I, II и II-a с одинаковой предварительной могут характеризовать особенности структуры образцов, связанные с методом полимеризации.

Закаленные образцы пентапласта II по сравнению с пентапластом I характеризуются более высоким содержанием β-формы.

Если считать, что в закаленных образцах как бы фиксируется конформационный состав полимера, характерный для повышенных температур, то полученный результат должен иметь значение в связи с деструкцией.

Относительно высокое содержание в пентапласте II более плотной β-формы, соответствующей спирали с меньшим шагом, может быть связано с низкой разветвленностью полимера, полученного на \(\text{Al(C_2H_5)_3} \).

Это предположение подтверждают рентгенографические исследования* исходных порошков I, II-a и II. Оказалось, что соотношение α- и β-форм в кристаллической фазе для I, II-a и II составляет соответственно 0,56; 0,42 и 0,40.

В закаленных пленках, полученных из раствора пентапласта I, содержится больше α-формы, а для пентапласта II-a содержание α- и β-форм приблизительно одинаково. Эти различия коррелируются со склонностью к термоокислению.

* Авторы признательны М. А. Мартынову за рентгенографический анализ пентапласта.
Таким образом, скорость процесса термоокислительной деструкции, по-видимому, связана с разным конформационным составом пентапластов I, II и II-a, который, в свою очередь, определяется наличием разветвлений при полимеризации в растворителе на катализаторе BF₃.

Этот вывод согласуется с литературными данными о том, что алкильные группы органических эфиров в присутствии фтористого бора активаются [7], т. е. при полимеризации создаются условия для разветвления цепи. Наличие при получении пентапласта I активного растворителя — метиленхлорида, который может служить передатчиком цепи, также должно способствовать разветвлению макромолекул.

При введении ингибиторов в пентапласты I, II и II-a описанные выше различия в скорости окисления обнаруживаются только по окончании индукционного периода. Его абсолютная величина для стабилизированных образцов практически не зависит от метода получения пентапласта (рис. 7). Поэтому термостабилизаторы, эффективно применяемые для пентапласта I [8], могут быть использованы для защиты пентапластов II и II-a.

Выводы

1. Термостабильность пентапласта в зависимости от способа его получения повышается в следующем ряду: пентапласт, полученный в растворе на BF₃; в блоке на Al(C₂H₅)₃ и в растворе на Al(C₂H₅)₃. Молекулярно-весовое распределение и остаточная зольность не объясняют наблюдаемых кинетических различий.

2. Термостабильность пентапласта, полученного в разных условиях полимеризации, по-видимому, связана с его конформационным составом, который может зависеть от наличия разветвлений.

Национально-исследовательский институт полимерных пластмасс

Поступила в редакцию 24 VI 1969

ЛИТЕРАТУРА

7. A. V. Точечев, С. В. Завгородный, Я. Л. Паушкин, Фтористый бор и его соединения как катализаторы в органической химии, Изд-во АН СССР, 1956.
8. C. C. Хинькая, Т. В. Крейцер, Е. Н. Матвеева, Пластины, 1968, № 12, 8.

THERMOOXIDATIVE DEGRADATION OF PENTAPLAST

IN DEPENDENCE OF THE METHOD OF POLYMERIZATION

S. S. Khin’kis, T. V. Kreitser, A. T. Emel’yanova, L. G. Bat’

Summary

Thermosensitivity of the pentaplast samples is increased in order: the polymer obtained by solution polymerization with BF₃, the one in mass with Al(C₂H₅)₃, in solution with Al(C₂H₅)₃. As it has been shown by infrared spectroscopy, the thermosensitivity is correlated with conformational composition depended on branching in the chains.