# СОРБЦИЯ КРАСИТЕЛЕЙ СИНТЕТИЧЕСКИМИ КАРБОКСИЛЬНЫМИ ИОНИТАМИ 

Г. Я. Герасимов, Л. Ф. Яхонтова, Б. І. Врунс

В предыдущих сообщениях, посвященных исследованию ионообменной сорбции больших понов антибиотических веществ, было показано, что протекание процесса и установление конечных состояний при обмене (ложных или истинных равновесий) вависит от ряда условий, из которых решающую роль пграет плотность структуры понита [1, 2, 3].

Равновесные состояния при сорбции достигаются независкмо от условпй только на сильнонабухающих понитах, проницаемых для крупных ионов. По мере уплотнения структуры смолы (понижения набухаемости ионита) при протекании сорбции наблюдается резкое торможение процесса. Продолжение контакта ионита с раствором не приводит к заметному иамененин количества сорбированного иона. В этом случае в системе катионит - раствор установливающиеся конечные состояния являются ложными равновесиями, так как пзменение условий вызывает возрастание обмена [4].

Результаты, полученные при изучении кинетики и статики сорбции больших ионов антибиотических веществ, позволили представить картину протекания ионообменного процесса и распределение сорбированных ионов в смоле [1]. При ложном равновесии сорбированные ионы в частице смолы распределены неравномерно по мере перехода от внешних слоев зерна ионита к внутренним. Устанавливающееся равновесное состояние при сорбдии приводит к равномерному распределению большого иона в смоле, т. е. концентрация его одинакова в любой точке зерна ионита.

Представлялось весьма интересным подтвердить приведенные выше предположения визуальным наблюдением распределения сорбированных больших ионов в смоле как в случае ложного, так и истинного равновесия. При изучении обмена ионов антибиотических веществ такое наблюдение было невозможно, так как укаванные ионы не обладают поглощением в видимой части спектра.

Для проведения непосредственного наблюдения распределения ионов при обмене нами была исследована сорбция красителей основного типа: метиленовой голубой (1-ый мол. вес 373 )


(2-ой мол. вес 542). Растворы указанных красителей легко колориметрируются. Удельная әкстинкдия растворов сохраняет постоянное значение при pH от 2 до 8,5 .

Для сорбдии были использованы солянокислые соли красителей, которые предварительно очищали: метиленовую голубую путем пестикратной перекристаллизадии из воды [7], антипириновую красную экстракцией хлороформом из водного раствора и упариванием хлороформа в вакууме при комнатной темшературе.

Сорбцию проводили из растворов при концентрации красителя, равной 0,05 н. на $\mathrm{Na-и} \mathrm{Н-формах} \mathrm{карбоксильных} \mathrm{катионитов}$, сшитости (различном содержании дивинилбензола - ДВБ).

В табл. 1 представлена характеристика использованных нами катионитов.

Обмен на водородной форме понитов проводили в присутствии авионита ЗДЭ-10, который вводили в систему для удаления образующейся при ионообменной реакции свободной кислоты [8]. Спедиально поставленными опытами было показано, что анионит не сорбирует красителей.

Исследование сорбции метиленовой голубой и антипириновой красной указанными катионитами показало, что протекающий продесс является ионообменной реакцией. Количество сорбированного красителя эквивалентно количеству вытесненных им ионов из катионита, причем метиленовая голубая обменивается с противоионами смолы, как одновалентный ион, а антипириновая красная, как двухвалентный. В табл. 2 приведены результаты оцределения эквивалентности обмена между ионами краситөля и понами натрия катио-

Таблица 1
Характеристика катионитов

| Наименование катионита (ㅅв катионита) |  |  | Объем 1 а катионита, c. ${ }^{\prime}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { B } 0,5 \mathrm{~F} . \\ & \mathbf{H}_{2} \mathbf{S O} . \end{aligned}$ | $\begin{aligned} & \text { B 0,5 н. } \\ & \text { NaOH. } \end{aligned}$ |
| KG-4 (1) | 0,4 | 12,3 | 4,0 | 19 |
| KВ-4 (2) | 0,8 | 10,4 | 3,9 | 9,8 |
| FБ-4П-3 (3) | 3,0 | 9,1 | 2,6 | 5,6 |
| K'-4 (4) | 3,0 | 9,15 | 3,0 | 5,2 |
| КБ-4П-2 (5) | 5,0 | 8,9 | 2,2 | 4,0 |
| К $\mathrm{B}-4$ (6) | 9,0 | 7,5 | 2,2 | 3,6 |
| КВ-4 (7) | 12,0 | 6,5 | 2,2 | 3,3 |

${ }^{1}$ Статическая обменная емкость катионита $\mathrm{Na}^{+}$, определяется при $\mathrm{pH}-7$. нита.

Как уже было отмечено, протекание обмена при участии больших ионов зависит от плотности структуры катионита. На рис. 1 и 2 представлены данные, касающиеся сорбции метиленовой голубой и автипириновой красной на ионитах различной степени спитости.

При сорбпии метиленовой голубой Na -формой ионита различной степеви сшитости, вцлоть до среднесшитой ( $9 \%$ ДВБ), количество сорбированного красителя эквивалентно статической обменной емкости (СОЕ) смолы по $\mathrm{Na}{ }^{+}$, причем равновесие наступает тем быстрее, чем менее спита смола (рис. 1). По мере уплотнения структуры ионита (содержание ДВБ

Эквивалентность обмена между ионами красителей и ионами катионита

| Na－натионит | COE no $\mathrm{Na}^{+}$， ме－3К6／2 | Сорбировано нрасителн， ме－экв／е | Найдено $\mathrm{Na}^{+}$ в смоле после обмена， мг－วкв／г | Обмен понов между ионитом и раствором， ме－эке／е |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{Na}^{+}$ | нраситель |
| Метиленовая голубая |  |  |  |  |  |
| КВ－4П－3（3\％ДВВ） | 9，12 | 8，71 | 0，73 | 8，39 | 8，71 |
| КБ－4（9\％ДВВ） | 8，06 | 7，36 | 0，61 | 7，45 | 7，36 |
| Антипириноваякрасная |  |  |  |  |  |
| $\mathrm{K口}-4(0,4 \%$ ДВВ | 12，30 | 9，90 | 2，58 | 9，70 | 9，90 |
| К丁－4（3\％ДВВ） | 10，90 | 8，88 | 2，05 | 8，82 | 8，88 |

выше $9 \%$ ）степень обмена резко падает．В этом случае количество сорби－ рованного красителя значительно ниже статической обменной емкости смолы．Измельчение ионита вызывает возрастание обмена，что указывает на отсутствие равновесия в данной системе．При сорбции антипириновой красной достигается более низкая степень обмена по сравнению с поглоще－ нием ионов．метиленовой голубой．Обмен антинириновой красной даже на слабосшитом поните（ $0,8 \%$ ДВВ）не приводит к полному использова－ нию СОЕ катионита．При сорбции на водородной форме смолы равновес－ ное состояние не достигается ни на одном из указанных нами катионитов как при участии метиленовой голубой，так и антипириновой красной （рис．2）．Отмечается резкое расхождение степени обмена па Н－форме по сравнению с Na－формой，особенно в случае обмена антипириновой крас－ ной．Измельчение катионита вызывает возрастание обмена．На ионитах с плотной структурой（ $12 \%$ ДВБ）обмен между ионамп водорода и краси－ теля практически не протекает．


Рис．1．Сорбция красителей Na формой карбоксильных катионитов（см．табл．1） Размер зерна $0,5-1$ мм；$t^{\circ}=25^{\circ}$
 нитом 3；4－то же метиленовои голубоф катионитом 6； 5 －то же натионитом 7； 6 －то же натио－ нитом 7 после его измельчения
Рис．2．Сорбдия красителей Н－формой карбоксильных катионитов（см．табл．1）．Раз－ мер зерна $0,5-1$ мл ；$t^{\circ}=25^{\circ}$
1－метиленовой голубои．катионитом $1 ; 2$－антипириново処 краснод катионитом 2；з－метилено－
вой голубои натионитом 3；4－то же натионитом 3 после его измельчения； 5 －то же натионитом 5 ； 6 －антипириново立 красной катионитом 5；7－метиленовод голубой катионитом 7

Существование ложных равновесий при сорбции ионов красителей Н-формой ионитов однозначно доказывается также возрастанием обмена при введении в систему минерального иона [8].

Как видно из рис. 3 , добавление NaCl в количестве, обеспечивающем его концентрацию в растворе не выше 0,03 н., вызывает резкое увеличение сорбции красителя метиленовой голубой. Сорбция в присутствии $\mathrm{Na}^{+}$, кондентрация которого в растворе выше 0,03 н., падает, однако обмен заканчивается установлением равновесных состояний в системе. В этом


Рис. 3


Pric. 4

Рис. 3. Зависимость величины сорбции красителя метиленовой голубой для катионита КБ-4П-2 от концентрации иона натрия в растворе. COE по $\mathrm{Na}^{+} 9,6$ мә-әкв/а.

$$
1 \text { - Na-форма натионита; } 2-\text { H-форма катионита }
$$

Рис. 4. Десорбция красителн метиленовой голубой с карбоксильных катионитов (см. табл. 1). Размер зерна $0,5-1 \mathrm{sm}, t^{\circ}=25^{\circ}$
1 - катионит $1 ; 2-2 ; 3-3 ; 4-6 ; 5$ - катионит 6 после измельчения

случае количество сорбированного красителя не зависит от исходной формы смолы (Na- или Н-формы).

Исследование десорбции красителей разбавленными водными растворами соляной кислоты показало, что неравновесные состояния имеют место и при протекании данного процесса.

На рис. 4 представлен процесс вытеснения красителя метиленовой голубой во времени 0,5 н. HCl на катионитах различной степени сшитости. Из приведенных данных видно, что прекращение обмена наступает после $70-120$ час. Дальнейший контакт ионита с кислотой не меняет концентрацию красителя в растворе. Как видно из рис. 4, степень вытеснения тем больше, чем меньше плотность структуры ионита. Однако даже на слабосшитом ионите ( $0,4 \%$ ДВБ)

Таблида 3
Степень вытеснения красителя из катионита

| Катионит <br> в Н-форме |  |  |
| :---: | :---: | :---: |
| КВ-4 (0,4\% ДВБ) | 9,1 | 81,2 |
| КБ-4 (0,8\% ДВБ) | 6,5 | 58,5 |
| КБ-4 (3\% ДВВ) | 1,2 | 39,0 |
| КВ-4 (9\% ДВБ) | 0,7 | 25,6 | не достигается полного вытеснения красителя из смолы. При сопоставлении протекания элюирования и сорбции красителя метиленовой голубой Н-формой әтих же катионитов отмечается явно выражедный параллелизм между указанными процессами. Из табл. 3 видно, что степень вытеснения красителя из катионита водным раствором кислоты тем выше, чем больше данный ионит в H -форме способен сорбировать краситель.

Подобное явление было обнаружено нами ранее при щсследовании ионообменной сорбции антибиотика стрептомицина [9]. Прекращение

вытеснения красителя не является следствием достижения равновесного состояния в системе, так как измельчение катионита после торможения процесса вновь приводит к значительному возрастанию десорбции (рис. 4).

В процессе элюирования обмен между ионами водорода и красителем происходит в первую очередь во внешних слоях зерна смолы, которые, переходя в Н-форму, становятся малопроницаемыми для выходящих из зерна ионов красителя. Естественно, что в тех случаях, когда ионит в Н-форме малопроницаем для красителя, будет иметь место торможение при десорбции.

Проведенное исследование сорбции красителей на ряде полимеризационных карбоксильных ионитов показало, что продесс обмена протекает с теми же специфпческими особенностями, которые были выявлены нами ранее при изучении обмена ионов антибиотических веществ. Как в том, так и в другом случае протекание сорбции зависит от определенных условий (плотности структуры ионита, степени его дисперсности к конщентрации минеральных ионов в растворе), определяющих конечное состояние процесса. При сорбции красителей отдельные особенности обмена проявляются особенно резко. Так, различие в сорбции на Na - и Н-формах при обмене красителя выражено более сильно по сравнению с сорбцией антибиотиков, так как водородная форма карбоксильных катионитов оказалась менее проницаемой для ионов метиленовой голубой и антипириновой красной. Малая проницаемость смолы в Н-форме для ионов красителей приводит и к резко выраженной необратимости сорбционного процесса, наблюдающейся при десорбции метиленовой голубой раствором минеральной кислоты.

Как указано выmе, изучение процесса сорбции красителей дает возможность визуального наблюдения распределения поглощенных ионов в зерне ионита. Это наблюдение мы проводили путем получения последовательных срезов при помощи микротома зерна смолы, на которой протекал ионный обмен.

Зерно смолы, по возможности шарообравной формы, после сорбции помещали в $20 \%$-ный раствор желатины, которуғо предварительно плавили, а затем охлаждали. При этом охлажденный раствор сохранял в течение $20-30$ мин. консистенцию жидкости, в которую погружали зерно смолы. Часть желатины с зерном смолы переносили на столик микротома и замораживали жидкой углекислотой, после чего получали ряд последовательных срезов толщиной $10-15 \mu$, из которых выбирали экваториальный. Полученные срезы помещали на предметное стекло и фотографировали под микроскопом в проходящем свете. Нами был получеш ряд микрофотографий, показывающих распределение ионов красителей при различных условиях обмена. На рис. 5, а представлена микрофотография среза зерна среднесшитого катионита ( $3 \%$ ДВБ), на котором после прекращения сорбции на Na -форме ионита в системе достигается равновесное состояние. Из рисунка видно, что зерно ионита равномерно прокрашено, т. е. концентрация красителя метиленовой голубой одинакова в любой точке частицы смолы. На рис. 5,6 показан срез, сделанный после сорбции метиленовой голубой Н-формой того же катионита (3\% ДВВ). После обмена в этом случае устанавливается ложное равновесие. Как видно из рисунка, краситель сорбируется только внешними слоями зерна, которые интенсивно прокрашены. По мере перехода от внешних слоев к внутренним степень обмена падает. Центральная зона зерна не участвует в обмене, она остается практически не окрашенной.

Распределение ионов красителя метиленовой голубой при ложном равновесши представлено также на рис. 5 , в для H -формы катионита КБ-4П-2 (5\% ДВБ).

На рис. 5,г приведена микрофотография среза, показывающая распределение ионов метиленовой голубой в зерне катионита, в котором


Рпс. 5. Распределение красителя метиленовой голубой в зернах катионита:
a - катионит КБ-4П-3 ( Na форма) после 600 час. ғонтапта понита е раствором. Увеличение 70 ; 6 - катнонит КБ-4П-3 (Н-форма) после 620 час. нонтанта. Увеличение 70 ; е - натнонпт КБ-4П-2 (Н-форма) после 600 час. контакта. Увеличенне 70; г - катионит КБ-4П-3 (Н-форма), имеющего трепњну. Срез получен после 600 час. контакта. Увеличение 70


Рпс. 6. Распределение основания красителя антипириновой красной в зерне катионита КБ-4П-3 (Н-форма) после 240 час. контакта. У величение 70


Рис. 7. Распределение красителя "метиленовой голубой в зерне катноннла КБ-4 с ДВБ 12\% (Nа-форма) после 600 часов контакта. (Увеличение 200)


Рис. 8. Влияние $\mathrm{Na}^{+}$на распределение красителя метиленовой голубой в зерне катиояита КБ-4П-3 (Н-форма):
$a$ - до внесения NaCl в раствор после 200 часов контакта; $\sigma$ - посте внесения NaCl в раствор и 600 час. контаюта. Увеличение 70


Рис. 9. Влияние $\mathrm{Na}^{+}$на распределение красителя антиириновой красной в зерне катионита КБ-4П-3 (Н-форма):
а - до внесения NaCl в раствор после 200 час. контакта; б- после внесения NaCl в раствор і 500 час. контакта. Увеличение 70


L
Рис. 10. Распределение красителя метиленовой голубой при десорб́ции с катионита КБ-4 (0,8\% ДВБ) после 700 час. контакта. Увеличение 140

в процессе обмена образовалась трещина. Из рисунка видно, что обмен протекает только с противоионами смолы, расположенными во внешних слоях зерна ионита. Интөнсивное прокрашивание зерна смолы наблюдается также и по краям трещины. В әтом случае наглядно показано, что увеличение степени дисперсности смолы приводит к более полному использованию ионита при обмене.

Срез, представлепный на рис. 6, сделан с H -формы катионита, содержащего $3 \%$ ДВБ после сорбции основания красителя антипириновой красной. В данной системе обмен затормаживается и устанавливается ложное равновесие. В работах, посвященных исследованию сорбции минеральных монов водородной формой карбоксильных катионитов, медленное протекание обмена объясняется низкой степенью диссоциации карбоксильных трупп ионита и малым градиентом концентрации $\mathrm{H}^{+}$-понов в смоле [1012]. Согласно этой точке зрения удаление $\mathrm{H}^{+}$-ионов из смолы должно привести к увеличченио обмена. При сорбции больших органических понов торможение обмена является следствием качественного изменения смолы, т. е. образования малопроницаемых для большого иона внешних слоев зерна ионита [13]. В этом случае повышение степени ионизации карбокскльных групп смолы не приводит к возрастанию обмена. Микрофотография, представленная на рис. 6 , показывает распределение ионов основания антишириновой красной. Сорбция протекала в условиях нейтрализации $\mathrm{H}^{+}$-понов, однако ускорения обмена не имело места.

Распределение ионов при ложном равновесии, устанавливающемся на Na-форме ионита, представлено на рис. 7. Сорбция красителя метиленовой голубой протекала на сильносшитом катионите ( $12 \%$ ДВБ). Указанный катионит, имеющий плотную структуру,обладает повышенной хрупкостью.На рис. 7 показан срез, сделанный с отколовшейся части зерна ионита. Данная микрофотография показывает, что обмен ионов протекает только во внепних слоях зерна ионита, в то время как центральная зона частиды остается совершенно не прокрашенной. Из рисунва видно, что интенсивный обмен протекает также по краям трещин, образовавшихся в зерне. На рис. 8 и 9 наглядно показано влияние $\mathrm{Na}^{+}$на перераспределение красителей метиленовой голубой и антипириновой красной в зерне ионита. Срезы $a$ получены с зерна Н-формы смолы, на которой при сорбции устанавливается ложное равновесие (катионит,содержащий $3 \%$ ДВБ). Добавление NaCl в количестве, обеспечивающем его концентрацию в растворе, равную 0,03 н., увеличивает проницаемость ионита по отношению к большим понам, что приводит к равномерному распределению понов в частице смолы (срезы б).

Из представленной микрофотографии среза зерна смолы после десорбции (рис.10) видно, что во внешних слоях частицы смолы концентрадия ғрасителя метиленовой голубой заметно падает по сравнению с центральной зоной.

Таким образом, приведенные микрофотографии срезов зерен ионитов наглядно демонстрируют распределение ионов красителей метиленовой голубой и антипириновой красной в смоле носле сорбции на ряде карбожсильных катионитов различной плотности. Сходство в протекании ионообменной реакции при участии красителей и антибиотических веществ указывает на идентичность механизма обмена этих больших ионов. Следовательно, можно считать, что распределение ионов красителей и аптибиотиков в зерне смолы имеет один и тот же характер.

## Выводы

Исследован процесс ионного обмена, происходящий на карбоксильных жатионитах при участии больших ионов красителей основного типа.

Процесс сорбции красителей метиленовой голубой, антипириновой жрасной и антибиотических веществ основного тина, изученный нами ра-

нее, протекает с одними и теми же специфическими особенностями. Общность поведения при протекании процесса указывает на один и тот же характер распределения этих ионов в смоле после обмена.

При исследовании сорбции антибиотических веществ картина распределения ионов в смоле была представлена только на основании изучения кинетики и статики ионообменной реакции.

Исследование сорбции указанных красителей дало возможность визуального наблюдения распределения ионов при любых условиях обмена. Обнаруженное распределение ионов полностью подтверждает ранее представленную картину протекания процесса, основанную на изучении закономерностей сорбции крупных органических ионов.
$\begin{array}{cc}\text { Всесоюзный научно-исследовательский } & \text { Пнститут антибиотиков }\end{array} \quad 4$ II 1960

## ЛИТЕРАТУРА

1. Л. Ф. Яхонтова, Е. М. Савицкая, Б. П. Брунс, Исследования в области ионообменной, распределительной и осадочной хроматографии. Изд. АН СССР, М., 1959, стр. 3.
2. Л. Ф. Яхоитова, Е. М. Савицкая, Б. П. Брувс, С. Н. Ковардыкова, Медицинск. пром-сть, 11, 15, 1959.
3. Л. Ф. Яхонтова, Б. П. Брунс, С. Н. Ковардыкова, Антибиотики, 1960, № 2,5 .
4. Л. Ф. Я хонтова, Е. М. Савицкая, Б. П. Брунс, Ж. физ. химии, 23, 15, 1959.
5. В. Г. ІІІ а пошников, Органические красящие вещества, Гостехиздат, Киев, 1955, стр. 449.
6. А. Е. Порай-Кошиц; О. Ф. Гинзбург, Б. А. Порай -Кошиц, Ж. общей химии, $27,1752,1957$.
7. Б. П. Нииольский, М. С. Захарьевский, В. В. Пальчевс кий, Учен. заниски ЛГУ, 211, 26, 1957.
8. Л. Ф. Яхонтова,. Е. М. Савицкая, Б. П. Брунс, Докл. АН СССР, 110, 249, 1956.
9. Л. Ф. Яхонтова, Исследования в области ионообменной хроматографии, Изд. АН СССР, М., 1957, стр. 179.
10. R. K unin, R. E. B arry, Industr. and Engng. chem., 41, 1269, 1949.
11. D. E. Connay, J. H. S. Green, D. Reichenberg, Trans. Faraday Soc., 50, 511, 1954.
12. C. H a a g e n, Z. Elektroch., 57, 178; 1953.
13. Е. М. Савпижан, Л. Ф. Яхонтова, Б. П. Брунс, Высокомолек. соед., 1, 1416, 1959.

## THE SORPTION OF DYES BY SYNTHETIC CARBOXYLATED ION EXCHANGERS <br> G. Ya. Gerasimov, L. F. Yakhontova, B. P. Bruns

Summary
Ion exchange taking place on carboxyl exchangers with the participation of large ions of basic type dyes has been investigated. The sorption of the dyes methylene blue, antipyrene red and of the previously investigated basic antibiotics has the same specific features. The commondehavior in the sorption process points out to a common distribution of the ions in the resin after exchange.

In the study of the sorption of antibiotics the picture of ion distribution in the resin was made only on the basis of the kinetics and statics of the ion exchange reaction.

The study of dyes sorption gave a means of visual observation of ion distribution under any conditions of exchange. The ion distribution as revealed visually completely confirmed the earlier concepts of the process based on the study of the relationships holding in the sorption of large organic ions.

