УДК 541(64+49):54.6.93

Полимеры с фрагментами

[2,2'-бихинолин]-диилдиметанаминов в основной цепи и их металл-полимерные комплексы с Cu(I)

©2023 г. М. Я. Гойхман*, И. В. Подешво, Н. Л. Лорецян,

И. В. Гофман, В. Д. Красиков, И. И. Малахова, Л. С. Литвинова,

Е. Н. Быкова, И. А. Насирова, А. В. Якиманский

Институт высокомолекулярных соединений

Российской академии наук

199004 Санкт-Петербург, Большой пр., 31

*e-mail: goikhman@hq.macro.ru

Поступила в редакцию 06.12.2023 г. После доработки 18.12.2023 г. Принята к публикации 29.12.2023 г.

Синтезированы новые мономеры бихинолинового ряда диилдиметанамины, на основе которых получены полимеры с бихинолиновыми звеньями в основной цепи и их металл-полимерные комплексы с хлоридом одновалентной меди. Полученные исходные соединения и полимеры исследованы методами ЯМР-спектроскопии, ВЭЖХ, синхронного термического (термогравиметрического И дифференциального термического) анализа, изучены механические металл-полимерных характеристики полимеров комплексов. И Показано, что структура и физико-химические свойства полимеров на основе синтезированных диилдиметандиаминов В значительной степени зависят от положения групп в бихинолиновом фрагменте и наличия в полимере межцепных координационных связей.

ВВЕДЕНИЕ

Одним из главных преимуществ полимеров по сравнению с другими материалами является сравнительная легкость регулирования физико-химических характеристик ИХ путем создания композиционных материалов помощью химической ИЛИ с модификации. В последнее время внимание исследователей привлекает новый метод изменения или регулирования уже имеющихся свойств полимеров, позволяющий вводить в полимеры неорганические соединения, создавая гибридные материалы. Этот метод состоит в получении металл-полимерных комплексов, т.е. комплексов переходных металлов с макромолекулярными лигандами [1-3].

Координационные соединения макромолекулярными С лигандами играют важную роль в развитии фотофизики [4], фотокатализа [5], электрохимии [6], фотолюминесценции [7] и в исследованиях переноса энергии. Важно отметить, что нековалентные взаимодействия (водородные связи, π -стекинг, металлофильные взаимодействия) оказывают непосредственное влияние на качества функциональных материалов. Изучение природы слабых ЭТИХ контактов вносит существенный вклад в развитие фундаментальных принципов материаловедения. Известно, что понижение лабильности супрамолекулярной системы за счёт нековалентных взаимодействий благоприятно сказывается на её фотофизических свойствах, в частности, на фотопроводимости и люминесценции, вследствие затруднения внутреннего вращения молекулярных фрагментов, участвующих в сопряжении, например ароматических колец. Кроме того, взаимодействия нековалентной природы кардинально влияют на механические характеристики полимеров, что дает возможность свойства широких пределах. Понимание варьировать ИХ В закономерностей формирования нековалентных взаимодействий в полимерных системах позволяет синтезировать функциональные материалы с прогнозируемыми свойствами.

Перспективным направлением в решении задач получения функциональных материалов является разработка методов синтеза полимеров сложной структуры, содержащих в основной цепи звенья, способные к образованию координационных связей с переходными металлами. В настоящее время синтезировано значительное число таких полимеров, в том числе на основе гетероциклических лигандов, однако лишь немногие из них имеют хорошую растворимость и способность к формированию пленок, обладающих высокой термической стабильностью и прочностью. Получение подобных многофункциональных полимеров может быть достигнуто путем модификации химической структуры элементарного звена полимера за счет сочетания в нем различных гетероциклических фрагментов, например имидного, обеспечивающего высокие прочностные и термические характеристики полимера, и бихинолинового, способного к образованию координационных связей с переходными металлами, а также наличию в основной полимерной цепи шарнирных групп (метиленовых, кислородных, сульфидных), повышающих растворимость полимеров. Это направление связано с получением новых мономеров и их последующим использованием в синтезе полимеров.

Ранее нами были синтезированы и исследованы металлполимерные комплексы с Cu(I) на основе полимеров с фрагментами 4.4-', 6,6'-, 7,7'- и 8,8'-бихинолиндикарбоновых кислот в основной цепи [8, 9]. Было показано, что при образовании металл-полимерных комплексов происходит заметный рост жесткости пленок полимеров. Такой эффект объясняется тем, что за счет образования комплекса с участием бихинолиновых циклов соседних макроцепей происходит снижение подвижности этих участков, т.е. координационные связи между атомами металла и лигандными группами ведут себя как межцепные сшивки. В то же время известно, что в некоторых случаях, например при использовании полимеров в мембранных технологиях, чрезмерная жесткость полимерной цепи нежелательна [10], поскольку это может привести к снижению производительности.

Таким образом, основная задача работы состояла в разработке методов получения новых полимеров, содержащих в основной цепи фрагменты 2,2'-бихинолина, способные к образованию комплексов с переходными металлами, и шарнирную группу (например, метиленовую), повышающую гибкость полимерной цепи, синтез металл-полимерных комплексов и исследование их свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты и вещества

Сульфат натрия безводный 99.9% ("Экрос"), гидроксиламин ("Экрос"), хлоральгидрат 98.5% ("Асгоз солянокислый 99.9% Organics"), фосфорная кислота 85% ("Химмед"), фосфор (V) оксид 98% ("Химмед"), диоксид селена 98% ("Aldrich"), пропиленоксид 99% ("Sigma-Aldrich"), метилен-бис-антраниловая кислота ("Экрос"), 98% ("Sigma-Aldrich"), *п*-толуидин, *м*-толуидин ацетоин 95% ("Merck"), углекислый никель ("Экрос"), карбонат аммония ("Экрос"), ("Экрос"), сульфолан 99% ("Sigma-Aldrich"), порошок меди муравьиная кислота 99% ("Химмед"), N-метилпирролидон (MII) 99.5% ("Sigma-Aldrich") использовали без дополнительной обработки.

Хлористый тионил очищали простой перегонкой, отбирали фракцию при температуре 76 °С. ДМФА сушили над гидридом кальция, очищали перегонкой в вакууме (0.1 мм рт. ст.), отбирали фракцию при температуре 56 °С.

Синтез промежуточных соединений и мономеров

1b. 5-метилизатин Синтез метилизатинов **1a**, 1a И б-метилизатин 1b синтезированы по реакции Зандмейера ИЗ *п*-толуидина или *м*-толуидина соответственно, хлоральгидрата и гидроксиламина солянокислого по методикам, приведенным в работах [11–13].

Синтез 7,7'-диметил-2,2'-бихинолин-4,4'-дикарбоновой кислоты 3b. В одногорлую круглодонную колбу, снабженную обратным холодильником, помещали 23 мл 40% водного раствора гидроксида калия, после чего добавляли 5 г (0.031 моля) 1b и 1.43 г (0.016 моля) ацетоина 2. Смесь нагревали при 100 °C в течение 24 ч, образовавшийся осадок после охлаждения отфильтровывали на фильтре Шотта и промывали 20 мл 33%-ного холодного раствора гидроксида калия. Полученную калиевую соль растворяли в 100 мл воды, раствор подкисляли соляной кислотой до pH 5, выпавший осадок отфильтровывали, промывали водой и переосаждали из 5%-ного раствора гидроксида калия.

промывали водой, сушили на воздухе. Выход 4.99 г (86%). Бесцветные кристаллы. Разлагается выше 360 °С. Спектр ЯМР ¹Н, ДМСО-d₆, δ, м.д. (*J*, Гц): 2.59 (6H, c, 2CH₃); 7.64 (2H, д, *J* = 8.7, H-6, H-6'); 8.13 (2H, c, H-8, H-8'); 8.70 (2H, д, *J* = 8.7, H-5, H-5'); 9.12 (2H, c, H-3, H-3'). Спектр ЯМР ¹³С, твёрдая фаза, δ, м.д.: 22.9 (2CH₃); 119.2; 121.4; 124.9; 130.8; 140.4; 152.9 (C–Ar); 174.1 (2COOH).

Найдено, %: С 70.90; Н 4.38; N 7.46.

Для C₂₂H₁₆N₂O₄

вычислено, %: С 70.96; Н 4.33; N 7.52.

По аналогичной методике из 5-метилизатина 1а была синтезирована 6,6'-диметил-2,2'-бихинолин-4,4'-дикарбоновая кислота **3a**. Выход 4.30 г (74%). Бесцветные кристаллы. Разлагается выше 350 °C. Спектр ЯМР ¹H (DMCO-d₆) δ , м.д. (*J*, Гц): 2.57 (6H, c, 2CH₃); 7.74 (2H, д, *J* = 8.7, H-7, H-7'); 8.18 (2H, д, *J* = 8.7, H-8, H-8'); 8.54 (2H, c, H-5, H-5'); 9.10 (2H, c, H-3, H-3'). Спектр ЯМР ¹³С, твёрдая фаза, δ , м.д.: 23.9 (2CH₃); 118.7; 123.4; 124.2; 130.8; 139.1; 146.4; 152.5 (C–Ar); 172.9 (2COOH).

Найдено, %: С 71.03; Н 4.27; N 7.59.

Для $C_{22}H_{16}N_2O_4$

вычислено, %: С 70.96; Н 4.33; N 7.52.

Синтез 7,7'-диметил-2,2'-бихинолина 4b. В одногорлую колбу вводили 4.3 г (0.0116 моля) **3b**, предварительно растертого в ступке с 0.215 г (0.0033 моля) порошка меди. Смесь при комнатной температуре продували в течение 30 мин аргоном, осушенным серной кислотой (склянка Тищенко), после чего колбу помещали в сплав Вуда, температуру поднимали до 290 °С. Систему выдерживали при данной температуре до завершения реакции (прекращение выделения углекислого газа, 15-18 мин). Продукт 4b очищали сублимацией в вакууме при температуре 250 °С в течение 2 ч. Выход 1.12 г (34%). Белые кристаллы, $T_{\pi\pi} = 289$ °C. Спектр ЯМР ¹Н, ДМСО-d₆, δ , м.д. (J, Гц): 2.58 (6H, с, 2CH₃); 7.52 (2H, д, J = 8.5, H-6, H-6'); 7.96 (2H, д, J = 8.5, H-5, H-5'); 7.97 (2H, с, H-8, H-8'); 8.51 (2H, д, J = 8.4, H-4, H-4'); 8.71 (2H, д, J = 8.4, H-3, H-3'). Спектр ЯМР ¹³С, твёрдая фаза, δ, м.д.: 21.0 (2CH₃); 118.1, 126.6, 128.2, 138.9, 148.6, 155.9 (C-Ar).

Найдено, %: С 84.55; Н 5.63; N 9.81.

Для $C_{20}H_{16}N_2$

вычислено, %: С 84.48; Н 5.67; N 9.85.

По аналогичной методике был синтезирован 6,6'-диметил-2,2'бихинолин 4a. Выход 1.24 г (38%). Белые кристаллы, $T_{пл} = 257$ °C. Спектр ЯМР ¹Н, ДМСО-d₆, δ, м.д. (*J*, Гц): 2.55 (6H, c, 2CH₃); 7.68 (2H, д, *J* = 8.7, H-7, H-7'); 7.83 (2H, c, H-5, H-5'); 8.07 (2H, д, *J* = 8.7, H-8, H-8'); 8.45 (2H, д, J = 8.6, H-3, H-3'); 8.73 (2H, д, J = 8.6, H-4, H-4'). Спектр ЯМР ¹³С, твёрдая фаза, δ, м.д.: 22.3 (2CH₃); 118.7, 127.3, 129.3, 137.8, 146.7, 155.0 (С–Аг).

Найдено, %: С 84.53; Н 5.60; N 9.91.

Для C₂₀H₁₆N₂

вычислено, %: С 84.48; Н 5.67; N 9.85.

Синтез 7,7'-диформил-2,2'-бихинолина 5b. В одногорлую колбу помещали 1 г (0.003 моля) 4b, 0.85 г (0.008 моля) диоксида селена, 8 мл сульфолана. Колбу нагревали до температуры 205 °С в течение 40 мин, после чего продолжали нагревание при данной температуре в течение 2 ч. Выпавший после охлаждения серый осадок суспензию перемешивали переносили В воду, 1 ч. затем отфильтровывали, промывали водой, высушивали И перекристаллизовывали из 150 мл ДМФА. Выход 1.02 г (93%). Белые кристаллы, $T_{nn} > 300$ °C. Спектр ЯМР ¹³С, твёрдая фаза, δ , м.д.: 118.6; 124.8; 130.4; 136.5; 145.8, 154.7 (C-Ar); 193.5 (2CH=O).

Найдено, %: С 76.97; Н 3.80; N 9.04.

Для C₂₀H₁₂N₂O₂

вычислено, %: С 76.91; Н 3.87; N 8.97.

По аналогичной методике был синтезирован 6,6'-диформил-2,2'бихинолин 5а. Выход 1.01 г (92%). Белые кристаллы, $T_{\rm пл} > 300$ °C. Спектр ЯМР ¹³С, твёрдая фаза, δ, м.д.: 118.3; 124.6; 130.6; 134.2; 136.4; 149.5, 156.1 (С–Аг); 193.8 (2СН=О).

Найдено, %: С 76.83; Н 3.95; N 9.03.

Для $C_{20}H_{12}N_2O_2$

вычислено, %: С 76.91; Н 3.87; N 8.97.

Синтез 2,2'-бихинолин-7,7'-диилдиметанамина 6b

Приготовление никелевого катализатора. К 1 г (0.008 моля) углекислого никеля добавляли 10 мл муравьиной кислоты, оставляли на 1 сутки, осадок отфильтровывали и сушили на воздухе. Перед опытом формиат никеля помещали в фарфоровый тигель, добавляли к нему 2 капли муравьиной кислоты, нагревали на газовой горелке до полного почернения порошка.

Приготовление формиат-формиатной смеси. В двугорлую колбу объемом 50 мл помещали 10 г (0.104 моля) карбоната аммония, через капельную воронку осторожно добавляли 10 мл муравьиной кислоты до слабокислой реакции, перемешивали 1 ч, после чего добавляли еще 1 мл муравьиной кислоты. Колбу снабжали насадкой для отгона малых количеств жидкостей и холодильником. При температуре 125–130 °C отгоняли 4 мл муравьиной кислоты, нагревали до 140 °С и охлаждали смесь до комнатной температуры.

Пол учение 6 b. В двугорлую колбу объемом 50 мл, снабженную обратным холодильником и механической мешалкой, помещали 0.58 г (0.0064 моля) формиат-формиатной смеси, добавляли 0.0064 (0.00192)моля) Г никелевого катализатора. Смесь перемешивали 30 мин, затем нагревали до 130-135 °C, добавляли 0.3 г (0.00096 моля) 5b, перемешивали 12 ч. Суспензию охлаждали и отфильтровывали. Полученный осадок помещали в колбу и добавляли 5 мл концентрированной соляной кислоты, кипятили с обратным холодильником 3 ч., по мере кипения реакционная масса становилась прозрачнее и приобретала темно-желтый цвет. Отфильтровывали горячий раствор и после охлаждения до комнатной температуры разбавляли водой в 10 раз. Аккуратно нейтрализовали сухим гидроксидом калия до нейтральной реакции так, чтобы раствор не нагревался выше 30 °C. Образовавшийся светло-серый осадок отфильтровывали, промывали водой, сушили на воздухе. Выход 0.26 г (87%). Светло-серые кристаллы, $T_{\rm пл} > 300$ °С. Спектр ЯМР ¹Н, ДМСО-d₆, δ, м.д. (*J*, Гц): 4.8 (4H, c, 2CH₂); 8.1 (2H, д, H-6, H-6'); 8.45 (2Н, с, Н-8, Н-8'); 8.75 (2Н, д, Н-3, Н-3'); 8.8 (2Н, д, Н-5, Н-5'); 9.15 (2Н, д, Н-4, Н-4').

Найдено, %: C – 76.46; H – 5.71; N – 17.83.

Для C₂₀H₁₈N₄

вычислено, %: C – 76.41; H – 5.77; N – 17.82.

По аналогичной методике был синтезирован 2,2'-бихинолин-6,6'-диилдиметанамин 6а

Выход 0.24 г (81%). Светло-серые кристаллы, *T*_{пл} > 300 °C. Спектр ЯМР ¹Н, ДМСО-d₆, δ, м.д. (*J*, Гц): 3.4 (4H, с, 2CH₂); 6.95(2H, д, H-7, H-7'); 7.15 (2H, с, H-5, H-5'); 7.35(2H, д, H-8, H-8'); 7.45(2H, д, H-4, H-4'); 7.85 (2H, д, H-3, H-3').

Найдено, %: C – 76.43; H – 5.73; N – 17.84.

Для $C_{20}H_{18}N_4$

вычислено, %: C – 76.41; H – 5.77; N – 17.82.

Синтез дихлорангидрида N,N'-дифенилоксид-бис-(тримеллитимидо)-кислоты проводили в соответствии с методикой, опубликованной в работе [14].

Синтез сополиамида 7b. В двугорлую круглодонную колбу, снабженную мешалкой, помещали 0.03 г (0.0001 моля) 2,2'бихинолин-7,7'-диилдиметанамина 6b и 0.257 г (0.0009 моля) метилен-*бис*-антраниловой кислоты. В колбу добавляли 7.5 мл МП, перемешивали до полного растворения диаминов, после чего охлаждали раствор до –15 °С. В охлажденный раствор вводили 0.584 г (0.001 моля) дихлорангидрида N,N'-дифенилоксид-*бис*-(тримеллитимидо)-кислоты. Суспензию перемешивали при –15 °С в течение 50 мин, после чего убирали охлаждающую баню, добавляли 0.05 мл пропиленоксида и перемешивали при комнатной температуре в течение 4–5 ч. Из полученного раствора ПА на стеклянные подложки отливали пленки, которые сушили при температуре 100 °С до постоянной массы. Толщина пленок для механических и термомеханических измерений составляла 20–30 мкм.

По аналогичной методике был синтезирован ПА 7а на основе 2,2'-бихинолин-6,6'-диилдиметанамина 6а.

Синтез металл-полимерных комплексов с Cu(I) 8a, 8b. Металлполимерные комплексы получали смешением растворов ПА 7a или 7b и хлорида одновалентной меди в МП. К раствору полимера в МП, помещенному в колбу, при перемешивании добавляли раствор хлорида одновалентной меди в МП из расчета 1 моль CuCl на 2 моль бихинолиновых звеньев полимера. Комплекс образуется при комнатной температуре в течение 30 мин. Из полученного раствора на стеклянные подложки отливали пленки, которые подвергали сушке при температуре 100 °C до постоянной массы. Толщина пленок для механических и термомеханических измерений составляла 20–30 мкм. Получение сополиамидобензоксазинонимидов 9а, 9b и их металл-полимерных комплексов 10а, 10b. Сополиамидобензоксазинонимиды 9а, 9b и их металл-полимерные комплексы 10а, 10b получали термической циклизацией 7а,7 b и 8а, 7b соответственно по режиму [9].

Исследование свойств синтезированных материалов

характеристики ПА Механические пленок И металлполимерных комплексов при комнатной температуре определяли в режиме одноосного растяжения с помощью универсальной установки механических испытаний "AG-100kNX Plus" ("Shimadzu", ДЛЯ Япония). В процессе испытаний получали следующие характеристики пленок: модуль упругости *E*, предел пластичности σ_n , прочность σ_p и предельную деформацию ДО разрушения ε_p. Механические характеристики получали путем усреднения результатов испытания 7-9 образцов каждого материала.

ТГА и дифференциальный термический анализ исследуемых пленок проводили с помощью установки совмещенного термического анализа DTG-60 ("Shimadzu", Япония). Образцы массой ~5 мг нагревали в открытом корундовом тигле в воздушной атмосфере до 600 °C со скоростью 5 град/мин. По полученным кривым изменения массы в процессе нагревания находили индексы термостойкости

материала τ_1 , τ_5 и τ_{10} – температуры, по достижении которых в ходе нагревания масса полимера или композита снижалась соответственно на 1, 5 и 10% в результате процессов термоокислительной деструкции. При этом низкотемпературные потери массы за счет ухода воды и растворителя вычитались из начальной массы образца.

Температуру стеклования пленок T_g определяли методом ТМА с помощью анализатора "ТМА 402 F1 Hyperion" ("NETZSCH", Германия). В процессе испытания образцы пленок с размером рабочей части 2 × 10 мм нагревали со скоростью 5 град/мин под действием стабилизированного растягивающего напряжения 5 кПа.

Спектры ЯМР ¹Н записывали на спектрометре "Bruker AV-400" при рабочих частотах 400 и 100 МГц соответственно (внутренний стандарт – Me₄Si.). Спектры ЯМР ¹³С в твердой фазе регистрировали на спектрометре "Bruker AM-500" при рабочей частоте 125 МГц по стандартной методике с использованием передачи поляризации и вращением под "магическим углом" с частотой 4.5 кГц (внутренний стандарт – гексаметилбензол). Элементный анализ впервые полученных соединений проводили на CHN-анализаторе HP-185В фирмы "Hewlett-Packard". Спектры поглощения растворов сополимеров в МП с концентрацией 0.6194 г/л записывали на спектрофотометре для ультрафиолетовой, видимой и ближней инфракрасной областей спектра "СФ-256 УВИ" (ЛОМО, "Фотоника", Россия) в сканирующем режиме шагом 0.5 нм со скоростью 100 нм/мин и с автоматическим изменением спектральной щели.

Среднюю ММ и индекс полидисперстности сополимеров и металл-полимерных комплексов с Cu(I) на их основе определяли методом ВЭЖХ на хроматографе фирмы "KNAUER" линейка "Smartline" (Германия), термостатом Jet колонок Stream с хроматографической эксклюзионной колонкой PLgel 10 µm MiniMIX-B, 4.6 x 250 mm ("Agilent Technologies", США), рефрактометрическим детектором и спектрометрическим детектором на основе диодной матрицы К-2501. Регистрацию хроматограмм и расчет молекулярномассовых характеристик проводили при помощи программного Clarity Chrom обеспечения (Германия). Калибровку хроматографической системы выполняли построением калибровки Мура по охарактеризованным узкодисперсным полистирольным стандартам ("Waters", США). Стандарты ПС были растворены в метилпирролидоне с добавлением 0.1 M LiCl.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Задача получения соединений исходных для синтеза бифункциональных бихинолиновых мономеров (диилдиметандиаминов) была решена помощью с синтеза бихинолиндикарбальдегидов, полученных окислением соответствующих диметилпроизводных 2,2'-бихинолина:

где 1а - 5-метил, 1b - 6- метил, X= Me, Y= - формил, Q= -CH₂NH₂

В соответствии с этой схемой в качестве исходных соединений для синтеза 6,6'- и 7,7'- диметил-2,2'-бихинолин-4,4'-дикарбоновых кислот 3a, 3b по реакции Пфитцингера с ацетоином 2 использованы 5и 6-метилизатины 1a,1b соответственно [15, 16]. Реакцию проводили в сильнощелочной среде в течение 24 ч. Далее дикарбоновые кислоты 3a, 3b декарбоксилировали при 300° С в присутствии катализатора – порошка металлической меди, в результате были получены 6,6'- и 7,7'диметил-2,2'-бихинолины 4a, 4b.

После очистки 4a, 4b с помощью сублимации в вакууме было проведено окисление метильных групп 4а,4b диоксидом селена и получены диальдегиды 5а, 5b. На заключительной стадии синтеза соединения 5а 5, были использованы для получения целевых продуктов восстановительным аминированием альдегидных групп по Лейкарта-Валлаха, при ЭТОМ были синтезированы реакции Следует диилдиметанамины 6a, 6b. отметить, что реакция Лейкарта–Валлаха хорошо является известным процессом, используемым для восстановительного аминирования альдегидов и кетонов [17–19]. Восстанавливающими агентами могут служить различные производные муравьиной кислоты, например смесь формиата аммония с муравьиной кислотой, смесь формамида с муравьиной кислотой, смесь формамида с формиатом аммония. В наших экспериментах была использована смесь формиата аммония с муравьиной кислотой с добавкой прокаленного формиата никеля в качестве катализатора. Как известно из литературы [20], именно такой подход обеспечивает максимальный выход целевого продукта. Нами были синтезированы 2,2'-бихинолин-6,6'-диилдиметандиамин и 2,2'бихинолин-7,7'-диилдиметандиамин из диальдегидов 5a 5b И

соответственно. Синтез 2,2'-бихинолин-8,8'-диилдиметандиамина оказался невозможным, поскольку не удалось получить исходное соединение – соответствующий 8,8'-диальдегид.

Полимеры с бихинолиновыми звеньями в основной цепи были синтезированы методом низкотемпературной поликонденсации (содержание бихинолиновых звеньев 10 мол.%).

На основе полученных полимеров и хлорида одновалентной меди были синтезированы металл-полимерные комплексы 8a, 8b

Синтез комплексов проводили при комнатной температуре смешением растворов соответствующего полимера и CuCl в МП. Кроме того, термической циклизацией сополиамидов 7a 7,b и их металл-полимерных комплексов 8a, 8b были получены соответствующие сополиамидобензоксазинонимиды 9a, 9b

и их металл-полимерные комплексы 10а, 10b

Для доказательства комплексообразования синтезированных полимеров с CuCl проведены исследования с использованием метода УФ-спектроскопии. На рис. 1 представлены электронные спектры поглощения растворов и их металл-полимерных комплексов, а также растворов исходных полимеров в МП. Растворы исходных сополимеров 7a, 7b не поглощают в области $\lambda = 400-750$ нм, в то время как в растворах комплексов 8a, 8b наблюдалось поглощение в области $\lambda = 550-650$ нм.

Для синтезированных ранее [9, 21] полиамидокислот (ПАК) на основе 2,2'-бихинолин-6,6'-, 7,7'- и 8,8'-бихинолиндикарбоновых кислот было показано, что при концентрации раствора полимера выше 2 мас.% образование комплексов ПАК–Си⁺ проходит только с участием двух соседних молекул полимера. При изучении молекулярно-массовых характеристик полиамидов 7а, 7b и металлполимерных комплексов на их основе 8а, 8b было обнаружено, что

Рис.1

поведение этих полимеров при комплексообразовании в растворах существенно отличается от поведения ПАК. При образовании 8a, 8b во всем исследованном диапазоне концентраций не наблюдалось удвоения молекулярной массы, как в случае ПАК-Сu⁺.

Проведенные исследования показали, что при комплексообразовании полиамидных макромолекулярных лигандов с Cu⁺ происходит более значительное возрастание молекулярной массы (табл. 1) по сравнению с ММ лигандов ПАК, описанных в работе [21]. В среднем молекулярная масса, оцененная хроматографически (*M_w*, *M_n*) и вискозиметрически (*M_n*), увеличивается в несколько раз.

Повышение молекулярных масс сопровождалось значительным уширением ММР (в 2.5–3 раза) (табл. 1), что свидетельствует о существенном усилении неоднородности в растворах. Наиболее заметный рост молекулярной массы в процессе образования металлполимерных комплексов наблюдался в случае полиамида 7b. В последнем случае ММ увеличивается более чем на порядок по сравнению с ММ полимера-предшественника.

Хроматограммы сравнения соединений 7а и 8а представлены на рис. 2.

Следует отметить, что из общих соображений комплексообразование должно происходить, так, что в целом по

Табл.1

Рис.2

раствора образовываться всему объему полимерного должна трехмерная Принимая сетка. BO внимание, что реакция комплексообразования является обратимой, можно ожидать, что молекулярная масса металл-полимерных комплексов будет не чрезмерно больших значений, HO, достигать тем не менее, значительно возрастет по сравнению с ММ исходного полимерного лиганда. Полученный результат можно объяснить тем, что наличие в полимерной цепи полиамидов 7а, 7b дополнительной мостиковой группы –CH₂– повышает гибкость полимерной цепи по сравнению с ПАК [21], что в свою очередь приводит к увеличению числа поворотных изомеров и позволяет лигандным группам полиамидов образовывать комплексы с бо[/]льшим числом соседних полимерных молекул.

Показатели термостойкости исследованных полимеров 7а, 7b, металл-полимерных комплексов 8а, 8b на их основе и продуктов термической циклизации – полиамидобензоксазинонимидов 9а, 9b и 10a, 10b приведены в табл. 2.

Табл.2

Как видно из полученных результатов, индексы термостойкости для металл-полимерных комплексов (образцы 8a, 8b и 10a, 10b) всегда ниже, чем эти показатели соответствующих исходных полимерных лигандов (7a, 7b и 9a, 9b соответственно) на 20–25 °C для τ_5 . В целом это соответствует известным литературным данным, согласно которым соли меди могут катализировать термическую деструкцию полимеров [22, 23]. Для предварительно циклизованных образцов наблюдается то же явление, но термостойкость падает слабее. Анализируя результаты ТГА (табл. 2), можно отметить, что в пленках комплекса содержится определенно более низкая, чем в пленках соответствующих полимеров, концентрация сорбированной влаги (потери массы в области температур до 100–120 °C). Данный факт указывает на рост гидрофобности поверхности пленок, реализуемый при введении в исследуемые полимеры ионов меди.

Рис.3

Ha рис. 3 представлены результаты исследования синтезированных полимеров методом ДТА. Приведены кривые ДТА образцов полимеров и комплексов с 6,6'-типом присоединения. О процессов, протекании связанных с удалением ИЗ полимеров сорбированной влаги, остаточного растворителя И воды, выделяющейся при циклизации, свидетельствует появление на кривых ДТА эндотермических пиков в областях температур до 110-120 и 230–270 °С соответственно. На кривых ДТА циклизованных образцов 9b и 10b, которые уже были подвергнуты термической обработке в процессе циклизации, пики в районе 230-270°С отсутствуют.

Для пленок ПА обеих исследованных структур и металлполимерных комплексов на их основе температуры эндотермических пиков располагаются в одном и том же сравнительно узком интервале 230–270°С, что указывает на сходство протекающих в этом интервале полимеров процессов для различного химического строения. Необходимо подчеркнуть, что для изученных металл-полимерных температура эндотермического комплексов появления пика превышает аналогичную характеристику для ПА в среднем на 10 °C. Наблюдаемое различие связано с тем, что выделение остаточного растворителя и циклизационной воды (как и сам процесс циклизации) более активно протекает в том случае, когда обеспечена подвижность полимерных цепей. Разумно полагать, что в случае металлполимерных комплексов, когда соседние полимерные цепи связаны комплексными структурами, такая подвижность затруднена, что в свою очередь приводит к росту температуры, необходимой для реализации указанных процессов.

Все испытанные пленки на основе синтезированных полимеров весьма близки по характеру деформационного процесса, наблюдаемого при их растяжении: во всех случаях реализуется пластический характер деформирования с отчетливым максимумом на деформационных кривых – пределом пластичности. Однако реальный процесс распространения шейки через образец, отвечающий пластическому характеру деформирования, наблюдается лишь для части из испытанных пленок, а именно для образцов 8a, 8b, 10a и 10b (рис. 4). Величина предельной деформации материала до разрушения определенно растет при переходе от исходных полимеров к соответствующим комплексам (пары образцов 7a-8a, 7b-8b, и 9a-10a, 9b-10b), в пленках которых, как отмечено выше, реализуется сплошная сетчатая структура. При этом образцы пленок полимеров-лигандов разрушаются уже при переходе через предел пластичности.

Все испытанные пленки довольно близки по величине модуля упругости (1.9–2.2 ГПа), однако можно все же отметить некоторый рост модуля, зарегистрированный в результате комплексообразования (комплексы ведут себя в объеме материала как узлы сшивки).

При термомеханических испытаниях всех пленок ПА и комплексов на их основе (образцы 7–8) зарегистрированы два термостимулированных перехода. Один из них для всех образцов реализуется в области 185–190 °C. Очевидно, это – температура стеклования. Второй, высокотемпературный переход, наблюдаемый при температурах 260–280 °C, очевидно, соответствует процессу расстекловывания в материале, полученном в результате циклизации в

Рис.4

ходе нагревания образцов ПА и комплексов на их основе в камере термомеханического анализатора. В ЭТОМ же температурном диапазоне выявлены переходы в предварительно циклизованных пленках 9–10. Отметим, что температуры данных переходов для комплексов несколько выше, чем для соответствующих полимерных лигандов (эффект ограничения подвижности полимерных цепей в результате комплексообразования). Аналогичный эффект в парах ПАкомплекс с Cu+ был зарегистрирован в работе [9]. Наконец, в пленках комплекса удается наблюдать дополнительный переход низкой интенсивности (слабый рост податливости материала) в области 320-330 °С. По всей видимости, этот эффект может отражать процессы роста подвижности молекулярных цепей в результате термостимулированного разрушения комплекса.

ЗАКЛЮЧЕНИЕ

Таким образом, на основании проведенных исследований можно заключить, что все полученные полимеры и металл-полимерные комплексы на их основе характеризуются высокой термо- и теплостойкостью в сочетании с хорошими механическими свойствами. Эти свойства позволяют рассматривать их в качестве основы для перспективных материалов, востребованных в различных областях техники (высокотемпературные волокна, связующие, мембраны для первапорации), которые могут длительно эксплуатироваться при температурах до 200 °C.

Работа выполнена в рамках государственного задания; тема № 124013000728-0.

Образец	$M_{ m \eta} imes 10^{-3}$	$M_w imes 10^{-3}$	$M_n \times 10^{-3}$	$M_{ m w}/M_n$
7a	51.1	57.0	22.3	2.5
8a	219.2	269.6	53.3	6.2
7b	17.8	19.1	11.4	1.7
8b	190.4	225.7	49.1	4.6

Таблица 1. Молекулярно-массовые характеристики сополимеров

Образец	Сорбционная влага, %	$ au_{\mathrm{l}}, ^{\mathrm{o}}\mathrm{C}$	τ ₅ , °C	$ au_{10},^{\circ}\mathrm{C}$
7a	0.9	403	468	510
8a	0.6	390	416	438
9a	1.2	445	482	520
10a	0.2	402	445	478
7b	0.8	405	465	511
8b	0.5	389	417	437
9b	1.1	447	483	519
10b	0.1	403	446	479

Таблица 2. Показатели термостойкости полученных полимеров

Подписи к рисункам

Рис. 1. Электронные спектры поглощения растворов полиамидов и металл-полимерных комплексов на их основе: *1* – 7a, *2* – 8a, *3* – 7b, *4* – 8b.

Рис. 2. Хроматограммы ЭЖХ образцов 8а (1) и 7а (2). Элюент 0.1 М раствор LiCl в МП.

Рис. 3. Кривые ДТА исследованных образцов 7b (1), 8b (2), 9b (3) и 10b (4).

Рис. 4. Деформационные кривые полимеров 7а (*1*), 8a (2), 7b (3), 8b, 9a (5), 10a (6), 9b (7), 10b (8) (6).

СПИСОК ЛИТЕРАТУРЫ

 Kimura A., Hayama H., Hasegawa J., Nageh H., Wang Y., Naga N., Nishida M., Nakano T. // Polym. Chem. J. 2017. V. 8. № 47. P. 7406.

2. *Nagata Y., Chujo Y.//* Macromolecules. 2008. V. 41. № 8. P. 2809.

3. Mazi H., Gulpinar A. // J. Chem. Sci. 2014. V. 126. № 1. P. 239.

4. Yang C.-H., Jai C., Sun I.-W. // T. Mater. Chem. 2004. V. 14. P. 947.

5. Stoessel S.J., Stille J.K. // Macromolecules. 1992. V. 25. P. 1832.

 Magdesieva T.V., Dolganov A.V., Yakimansky A.V., Goikhman M.Ya., Podeshvo I.V., Kudryavtsev V.V. // Electrochim. Acta. 2008. V. 53. P. 3960.

7. Goikhman M.Ya., Podeshvo I.V., Loretsyan N.L., Gofman I.V., Smyslov *R.Yu., Vlasova E.N., Yakimansky A.V.* // Polymer Science B. 2022. V. 64.
№ 1. P. 39.

8. Goikhman M.Y, Gofman I.V., Podeshvo I.V., Aleksandrova E. L.,
Pozdnyakov A.O., Kudryavtsev V.V. // Polymer Science A. 2003. V. 45.
№ 7. P. 591.

9. Гойхман М.Я., Подешво И.В., Красиков В.Д., Малахова И.И., Гофман И.В., Лорецян Н.Л., Смирнов М.А., Смирнов Н.Н., Власова Е.Н., Гулий Н.С., Якиманский А.В. // Изв. РАН. Сер. хим. 2023. Т. 72. № 5. С. 1150. 10. Bolto B., Hoang M., Xie Z. // Chem. Eng. Proc.: Proc. Intensification.
2011. V. 50. № 3. P. 227.

11. Pfitzinger W., Prakt J. // Chem. 1902. V. 66. P. 263.

Гойхман М.Я., Гулий Н.С., Подешво И.В., Гофман И.В., Полоцкая
 Г.А., Лорецян Н.Л., Смирнова В.Е., Якиманский А.В. // Сб. науч. тр.
 Физико-химия полимеров: синтез, свойства, применение. Тверь, 2014.
 Вып. 20. С. 172.

 Жунгиету Г.И., Рехтер М.А. Изатин и его производные. Кишинев: Штиинца, 1977.

14. Goikhman M. Y., Gofman I. V., Tikhonova L. Y., Mikhailova M. V., Kudryavtsev V. V., Laius L. A. // Polymer Sciences A. 1997. V. 39. №2.
P. 117.

15. Lesesne S.D. Henze H.R. // J. Am. Chem. Soc. 1942. V. 64. № 8.
P. 1897.

Гершунс А.Л., Коваль В.Л., Агальцов А.М., Сафонова Т.А. // Изв.
 вузов. Химия и хим. технология. 1978. V. 3. Р. 63.

17. Lee S.-C., Park S.B. // Chem. Commun. J. 2007. № 36. P. 3714.

18. Morozov I.S., Klimova N.V., Lavrova L.N., Avdyunina N.I., Pyatin
B.M., Troitskaya V.S., Bykov N.P. // Khim.-Farmatsevt. Zhurn. 1998. V. 32.
№ 1. P. 3.

19. Frederick M. O., Kjell D.P. // Tetrahedron Lett. 2015. V. 56. № 7. P. 949.

20. *Вейганд К*. Методы эксперимента в органической химии. М.: Издво иностр. лит., 1952. Ч. 2.

21. Krasikov V.D., Pokhvoshchev Y.V., Malakhova I.I., Gorshkov N.I.,
Gulii N.S., Podeshvo I.V., Goikhman M.Ya., Yakimansky A. V // Int. J.
Polym. Analysis Characterizat. 2017. V. 22. № 5. P. 1.

22. Dubinsky S., Grader G. S., Shter G.E., Silverstein M.S. // Polym. Degrad. Stab. 2004. V. 86. P. 171.

23. Gorghiu L.M., Jipa S., Zaharescu T., Setnescu R., Mihalcea I. // Polym. Degrad. Stab. 2004. V. 84. P. 7.

Рис. 1

Рис. 2

Рис. 4.