———— КОМПОЗИТЫ ————

УДК 541.64:539.3:546.26=162

ТВЕРДОФАЗНОЕ ПОЛУЧЕНИЕ КОМПОЗИЦИЙ ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ С ВОССТАНОВЛЕННЫМ ОКСИДОМ ГРАФЕНА ПОД ДЕЙСТВИЕМ СДВИГОВЫХ ДЕФОРМАЦИЙ

© 2023 г. М. М. Гасымов^а, С. З. Роговина^{а,*}, О. П. Кузнецова^а, В. Г. Шевченко^{а,b}, А. А. Берлин^а

^аФедеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук 119991 Москва, ул. Косыгина, 4, Россия

^bИнститут синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук 117393 Москва, ул. Профсоюзная, 70, Россия

> *e-mail: s.rogovina@mail.ru Поступила в редакцию 11.09.2023 г. После доработки 05.10.2023 г. Принята к публикации 23.10.2023 г.

В условиях высокотемпературных сдвиговых деформаций в роторном диспергаторе получены композиции полиэтилена низкой плотности с наноуглеродным наполнителем — восстановленным оксидом графена различного состава. С привлечением широкого спектра физико-химических методов анализа, включающих в себя метод лазерной дифракции, сканирующую электронную микроскопию, измерения механических и электрических параметров, проведено исследование структуры и свойств полученных нанокомпозиций. Продемонстрировано влияние состава композиций на характеристики получаемых материалов.

DOI: 10.31857/S2308112023600023, EDN: DDRRTR

введение

Полимерные нанокомпозиты, содержащие в качестве наполнителей графен и его производные, представляют собой перспективные материалы, широко использующиеся в различных областях [1–8]. Уникальная двумерная структура этих соединений углерода позволяет применять их для получения материалов, характеризующихся хорошими прочностными и электрическими показателями, долговечностью и технологичностью, соответствующих современным техническим требованиям и способствующих их разнообразному использованию [9–15].

Такие нанокомпозиты могут быть получены различными способами, обычно используемыми при создании полимерных композиций, а именно полимеризацией in situ, а также смешением в растворе или расплаве [16].

Основной проблемой при получении нанокомпозитов является обеспечение равномерного распределения графеновых производных в полимерной матрице. Это, в частности, может быть достигнуто проведением процесса под действием высокоинтенсивных сдвиговых деформаций с использованием определенного типа смесителей (двухшнековый экструдер, роторный диспергатор, смеситель Брабендер) [17]. Данный метод основан на явлении множественного растрескивания твердого тела и разрушении его на отдельные частицы в условиях интенсивного сжатия и одновременного деформирования сдвигом, осуществляемых при оптимальных температурах. Применение метода высокотемпературных сдвиговых деформаций позволяет получать материалы на основе полимеров с более равномерным распределением компонентов, в том числе и при использовании лисперсных наполнителей. в частности графеновых производных [18], по сравнению с композициями, получаемыми при смешении в жидкой фазе. Как следствие, образующиеся композиции обладают улучшенными физико-химическими характеристиками, при этом отличительной особенностью данного метода является тот факт, что процесс протекает с малыми энергетическими затратами в твердом состоянии в отсутствие растворителей, что делает его экологически чистым.

Ранее нами был проведен цикл работ, посвященных получению в условиях твердофазного смешения многочисленных композиций на основе полимеров различных классов (полиэтилена, природных полисахаридов, биоразлагаемых алифатических полиэфиров полилактид и поли-(3гидроксибутират) и изучению их свойств [19–21].

Также под действием сдвиговых деформаций в смесителе Брабендера были разработаны компо-

зиции полилактида с нанонаполнителями — восстановленным оксидом графена и нанопластинами графита [22, 23]. Было установлено, что механические свойства разрабатываемых материалов зависят как от природы, так и от количества используемого нанонаполнителя.

Тем не менее, в литературе встречается незначительное количество работ, посвященных созданию композиций на основе полиэтилена и графеновых наполнителей [24–27].

Цель настоящей работы — получение твердофазным способом в роторном диспергаторе наполненных композиций ПЭНП—восстановленный оксид графена различного состава и сравнительное исследование их свойств. Это представляет собой перспективное направление работ, проводимых в данной области, поскольку способствует созданию на основе этого крупнотоннажного полимера материалов с новым комплексом свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования служил ПЭНП (Ribelen FC 30) с $\rho = 0.922$ г/см³ и показателем текучести расплава 0.25 г/10 мин (190°С, 2.16 кг), наполнителем — восстановленный оксид графена.

Синтез восстановленного оксида графена осуществляли в несколько стадий согласно работе [28]: вначале окислением кристаллического графита раствором KMnO₄ в кислой среде по методу Хаммерса синтезировали оксид графена, из которого в дальнейшем восстановлением был получен восстановленный оксид графена.

Термическое восстановление оксид графена проводили в трубчатой печи при 900°С, где происходило взрывообразное разложение оксид графена с выделением газообразных СО, СО₂ и H₂O и образованием значительно увеличенного в объеме твердого продукта — восстановленного оксида графена [29].

Композиции ПЭНП–восстановленный оксид графена получали путем смешения ПЭНП и восстановленного оксида графена под действием сдвиговых деформаций в роторном диспергаторе при температуре 155–160°С. Концентрация восстановленного оксида графена в смесях составляла 0.05, 0.1, 0.15, 0.20, 0.25 и 0.9 мас. %.

Для измерений механических и электрических характеристик композиций, а также определения структуры образцов на лабораторном прессе "Carver" при температуре 190°С и давлении 10 МПа были отпрессованы пленки толщиной 0.3 мм.

Определение дисперсного состава композиций ПЭНП—восстановленный оксид графена методом лазерной дифракции проводили в жидкой среде в наноанализаторе размеров частиц "Fritsch Analysette 22 Microtec plus" ("Fritsch", Германия) с разрешающей способностью в диапазоне 0.08—2000 мкм.

Структуру композиций исследовали методом электронной сканирующей микроскопии с использованием микроскопа "Jeol JSM-7001F" (Япония). Во вторичных электронах при ускоряющем напряжении 15 кэВ были получены СЭМ-изображения, характеризующие морфологию поверхности сколов пленочных образцов. Предподготовка заключалась в магнетронном напылении золота в среде аргона на поверхность образца с целью создания токопроводящей пленки толщиной менее разрешающей способности электронного сканирующего микроскопа.

Механические испытания композиций выполняли на разрывной машине "Instron-3365" (UK) в режиме одноосного растяжения при постоянной скорости перемещения верхнего траверса 5.0 мм/мин и комнатной температуре. Из диаграмм растяжения напряжение σ -удлинение ε определяли модуль упругости *E*, предельные значения прочности σ_p и удлинения при разрыве ε_p . Результаты усредняли по шести-семи образцам.

Диэлектрические свойства нанокомпозитов (диэлектрическая проницаемость, потери, электрический модуль и проводимость) изучали в диапазоне частот $10^{-1}-10^6$ Гц с помощью импедансанализатора "NovocontrolAlpha-Au" диэлектрической ячейки ZGS Alpha Active Sample Cell с позолоченными дисковыми электродами диаметром 20 и 30 мм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При исследовании дисперсного состава композиций ПЭНП—восстановленный оксид графена с разным соотношением компонентов, полученных под действием сдвиговых деформаций в роторном диспергаторе, было установлено, что при измельчении как ПЭНП, так и его композиций с восстановленным оксидом графена, образуются порошки с различным распределением частиц по размерам (рис. 1).

Как следует из рис. 1, ПЭНП характеризуется узким распределением с размером частиц от 0.1 до 10 мкм (кривая *I*), тогда как размер частиц восстановленного оксида графена находится в интервале 0.1—160 мкм (кривая *2*). Эти данные коррелируют с результатами, полученными методом СЭМ (рис. 2), из которых отчетливо видно, что ПЭНП представляет собой отдельные частицы (рис. 2а), в то время как частицы восстановленного оксида графена являются чешуйчатыми агломератами разного размера (рис. 2б).

Образование таких агломератов обусловлено их большой удельной поверхностью и, как правило, в том или ином виде они присутствуют в по-

2023

Рис. 1. Дифференциальные кривые распределения ПЭНП (1), частиц восстановленного оксида графена (2) и композиций ПЭНП—восстановленный оксид графена с содержанием наполнителя восстановленного оксида графена 0.05 (3), 0.10 (4), 0.15 (5), 0.20 (6), 0.25 мас. % (7). Цветные рисунки можно посмотреть в электронной версии.

добных композициях. В то же время вид кривых распределения частиц композиций зависит от содержания восстановленного оксида графена (рис. 1). Кривые распределения частиц композиций, содержащих от 0.05 до 0.15 мас.% восстановленного оксида графена (кривые 3-5) практически совпадают с кривой распределения частиц ПЭНП. Однако увеличение содержания нанонаполнителя от 0.2 до 0.25 мас.% приводит к уширению кривых распределения (кривые 6, 7), и размер частиц композиций находится в диапазоне от 0.1 до 140 мкм.

Для изучения морфологии полученных композиций методом СЭМ использовали сколы образцов с содержанием наполнителя 0.25 мас. % (рис. 3). Как следует из микрофотографий, в композициях восстановленный оксид графена присутствует в виде чешуйчатых агломератов с размерами, значительно превышающими величину исходных наночастиц (рис. 26).

Необходимо отметить, что образующиеся агломераты, по-видимому, неравномерно распределены в полимерной матрице, что может приводить к снижению прочностных и электрических характеристик получаемых композиций.

Механические характеристики ПЭНП и его композиций с восстановленным оксидом графена, полученных под действием сдвиговых деформаций, представлены на рис. 4. Видно, что введение восстановленного оксида графена в диапазоне исследуемых концентраций вызывает незначительное повышение значений модуля упругости *E* и снижение предельной прочности σ_p по сравнению с исходным ПЭНП. В то же время наблюдается заметное падение значений удлинения при разрыве ε_p , что обусловлено агломерацией частиц восстановленного оксида графена и соответствует данным СЭМ.

Ранее в работе [18] при изучении механических свойств композиций полилактид—восстановленный оксид графена, полученных твердофазным способом под действием сдвиговых деформаций и жидкофазным синтезом в хлороформе, было показано, что значения предельной прочности σ_p и удлинения при разрыве ε_p композиций, полученных твердофазным синтезом, несколько выше, чем у аналогичных композиций, синтезированных в жидкой фазе (так, при содержании восстановленного оксида графена 0.25 мас.% значения $\sigma_p = 52.5$ и 38.5 МПа, а $\varepsilon_p = 2.5$ и 2.0% соответственно).

Диэлектрические свойства композиций ПЭНП-восстановленный оксид графена были

Рис. 2. СЭМ-изображения частиц восстановленного оксида графена (а) и ПЭНП (б).

Рис. 3. СЭМ-изображения композиции ПЭНП-восстановленный оксид графена с содержанием наполнителя 0.25 мас. %. Увеличение 3000 (а) и 5000 (б).

Рис. 4. Зависимости модуля упругости E (а), предельной прочности σ_p (б) и удлинения при разрыве ε_p (в) от содержания c восстановленного оксида графена в композициях ПЭНП—восстановленный оксид графена.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 65 № 5 2023

Рис. 5. Зависимости от частоты f диэлектрической проницаемости ε' (а), проводимости σ (б) и диэлектрических потерь ε'' (в) измельченного ПЭНП (I) и его композиций с восстановленным оксидом графена (2–7). Концентрация восстановленного оксида графена 0.05 (2), 0.1 (3), 0.15 (4), 0.20 (5), 0.25 (6), 0.9 мас.% (7).

исследованы в интервале концентраций наполнителя от 0.1 до 0.9 мас.%. На рис. 5 представлены частотные зависимости диэлектрической проницаемости ε' , проводимости σ и диэлектрических потерь ε'' композитов ПЭНП с различной концентрацией восстановленного оксида графена.

Как видно, диэлектрическая проницаемость є' практически не зависит от содержания наполнителя в интервале его концентраций от 0.1 до 0.25 мас. % и равна 2.2 ± 0.1 . Увеличение проницаемости до 2.98 наблюдается только при концентрации восстановленного оксида графена 0.9 мас. %.

Проводимость σ также почти не зависит от содержания наполнителя, как и наклон ее частотной зависимости, составляющий 1 ± 0.05 . Диэлектрические потери є" в композитах очень малы (порядка нескольких тысячных). Все эти факты объясняются малой концентрацией проводящего наполнителя, которая намного ниже порога протекания.

Диэлектрические свойства материала (диэлектрическая проницаемость є', потери є") обычно описываются с помощью уравнения Гаврилиака–Негами с проводимостью [30]

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\Delta \varepsilon}{\left(1 + (i\omega\tau)^{\alpha}\right)^{\beta}} + i\frac{\sigma_0}{\varepsilon_0\omega^n},\tag{1}$$

где ϵ^* — комплексная диэлектрическая проницаемость; $\Delta \epsilon = \epsilon_s - \epsilon_{\infty}$ — высокочастотный и низкочастотный пределы диэлектрической проницаемости; τ — характерное время релаксации; ω — частота; α — параметр, определяющий симметрию

Рис. 6. Зависимости диэлектрической проницаемости є' (1) и потерь є" (2) для образца ПЭНП–восстановленный оксид графена (0.9 мас. %). Точки – экспериментальные данные, линии – результат аппроксимации.

распределения времен релаксации; β – параметр, определяющий ширину спектра; σ_0 – электрическая проводимость, ε_0 – диэлектрическая проницаемость вакуума; n – параметр.

Как показывает анализ полученных результатов, экспериментальные зависимости описываются двумя релаксационными процессами (функциями Гаврилиака—Негами), высокочастотным (уравнение (2)) и низкочастотным с проводимостью (уравнение (3)):

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\Delta \varepsilon}{\left(1 + (i\omega\tau)^{1-\alpha}\right)^{1-\beta}}$$
(2)

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\Delta \varepsilon}{\left(1 + (i\omega\tau)^{1-\alpha}\right)^{1-\beta}} + i\frac{\sigma_0}{\varepsilon_0\omega^n}$$
(3)

На рис. 6 в качестве примера приведены частотные зависимости диэлектрической проницаемости и потерь для композита с концентрацией наполнителя 0.9 мас.% и результаты аппроксимации по уравнениям (2) и (3) – красные линии. Поскольку ПЭНП является неполярным полимером с очень низкими диэлектрическими потерями, это увеличивает погрешность измерений использованного импеданс-анализатора и ухудшает сходимость аппроксимации при меньших концентрациях наполнителя, в связи с чем определенных выводов относительно зависимости параметров уравнений (2) и (3) от концентрации наполнителя сделать не удается. Можно лишь отметить, что значения параметра α обоих уравнений для всех композитов близки к единице. Это означает, что диэлектрические потери определяются в основном потерями за счет электропроводности, иными словами, наличием примесных носителей заряда. При этом релаксационные процессы, связанные с подвижностью диполей в полимерной цепи, практически не наблюдаются.

Таким образом, проведение твердофазного смешения ПЭНП с наночастицами восстановленного оксида графена под действием сдвиговых деформаций позволяет получить композиционный материал, отличающийся по своим механическим и электрическим характеристикам от исходного полимера в зависимости от степени наполнения.

ЗАКЛЮЧЕНИЕ

В условиях высокотемпературных сдвиговых деформаций в одношнековом роторном диспергаторе получены композиции ПЭНП—восстановленный оксид графена с содержанием наполнителя от 0.05 до 0.9 мас. %.

Методом лазерной дифракции определено распределение частиц порошковых композиций ПЭНП—восстановленный оксид графена по размерам. Показано, что введение частиц восстановленного оксида графена приводит к уширению кривых распределения по сравнению с исходным ПЭНП.

Методом сканирующей электронной микроскопии изучена морфология полученных композиций и обнаружено, что наночастицы восстановленного оксида графена в смеси представляют собой агломераты чешуйчатой структуры.

Исследование механических свойств композиций показало, что введение восстановленного оксида графена способствует небольшому возрастанию модуля упругости *E*, при одновременном снижении предельной прочности σ_p и удлинения при разрыве ε_p , что может быть связано с агломерацией частиц восстановленного оксида графена, происходящей при смешении компонентов в процессе экструзии.

При изучении электрических свойств композиций было установлено, что диэлектрическая проницаемость є' практически не зависит от содержания наполнителя в области малых концентраций от 0.1 до 0.25 мас.% и возрастает только при концентрации восстановленного оксида графена 0.9 мас.%. Отсутствие регулярной зависимости постоянной и переменной проводимости от концентрации наполнителя может указывать на неоднородное распределение частиц наполнителя в матрице полимера.

Работа выполнена в рамках государственного задания Федерального исследовательского центра химической физики Российской академии наук (№ FFZE-2022-0010).

СПИСОК ЛИТЕРАТУРЫ

- 1. Jeffrey R.P., Daniel R.D., Christopher W.B. // Polymer. 2011. V. 52. P. 5.
- Layek R.K., Nandi A.K. // Polymer. 2013. V. 54. № 19. P. 5087.
- Alam F., Choosri M., Gupta T.K., Varadarajan K.M. // Mater. Sci. Eng. B. 2019. V. 241. P. 82.
- 4. Barra A., Santos J.D.C., Silva M.R.F., Nunes C. // Nanomaterials. 2020. V. 10. P. 1.
- 5. *Rafiee M.A., Rafiee J., Wang Z., Song H., Yu Z.-Z., Koratkar N.* // ACS Nano. 2009. V. 3. № 3. P. 3884.
- Abbasi H., Antunes M., Velasco J.I. // Prog. Mater. Sci. 2019. V. 103. P. 319.
- Nasir A., Kausar A., Younus A. // Polym. Plast. Technol. Eng. 2015. V. 54. P. 750.
- Olanipekun O., Oyefusi A., Neelgund G.M., Oki A. // Spectrochim. Acta A. 2015. V. 149. P. 991.
- Zhu Y., Peng Q., Qin Y., Zhao X., Xu L., Chen Q., Li Y., Xu Z., He X. // ACS Appl. Nano Mater. 2020. V. 3. P. 9076.
- Pang Y., Yang J., Curtis T.E., Luo S., Huang D., Feng Z., Morales-Ferreiro J.O., Sapkota P., Lei F., Zhang J., Zhang Q., Lee E., Huang Y., Guo R., Ptasinska S., Roeder R.K., Luo T. // ACS Nano. 2019. V. 13. P. 1097.
- Sarker F., Karim N., Afroj S., Koncherry V., Novoselov K.S., Potluri P. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 34502.
- Chen M., Muniz A.R., Maroudas D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 28898.
- Gobi N., Vijayakumar D., Keles O., Erogbogbo F. // ACS Omega. 2017. V. 2. P. 4356.
- Messina E., Leone N., Foti A., Marco G.D., Riccucci C., Carlo G.D., Maggio F.D., Cassata A. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 23244.
- 15. *Liu W., Do I., Fukushima H., Drzal L.T.* // Carbon Letters. 2016. V. 11. № 4. P. 279.
- Potts J.R., Daniel R.D., Christopher W.B., Rodney S.R. // Polymer. 2011. V. 52. P. 5.

- 17. *Прут Э.В., Зеленецкий А.Н.* // Успехи химии. 2001. Т. 70. № 1. С. 72.
- Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P., Ermolaev I.M., Shevchenko V.G., Shapagin A V., Arbuzov A.A., Berlin A.A. // Mech. Compos. Mater. 2023. V. 58. № 6. P. 845.
- Rogovina S.Z., Aleksanyan K.V., Loginova A.A., Ivanushkina N.E., Vladimirov L.V., Prut E.V., Berlin A.A. // Starch – Starke. 2018. V. 70. № 7. P. 1700268.
- Rogovina S., Prut E., Aleksanyan K., Krashininnikov V., Perepelitsyna E., Shaskin D., Ivanushkina N., Berlin A. // J. Appl. Polym. Sci. 2019. V. 136. № 22. P. 47598.
- Rogovina S., Zhorina L., Gatin A., Prut E., Kuznetsova O., Yakhina A., Olkhov A., Samoylov N., Grishin M., Iordanskii A., Berlin A. // Polymers. 2020. V. 12. P.1088.
- 22. Rogovina S., Lomakin S., Usachev S., Gasymov M., Kuznetsova O., Natalya S., Shevchenko V., Prut E., Berlin A. // Polym. Crystallization. 2022. V. 2022. P. 1.
- Rogovina S.Z., Lomakin S.M., Gasymov M.M., Kuznetsova O.P., Shevchenko V.G., Melnikov V.P., Berlin A.A. // Polymer Science D. 2023. V. 16. № 1. P. 161.
- 24. *Wu H., Lu C., Zhang W., Zhang X.* // Mater. Des. 2013. V. 52. P. 621.
- 25. Che J., Wu K., Lin Y., Wang K., Fu Q. // Composites A. 2017. V. 99. P. 32.
- Khanam P.N., AlMaadeed M.A., Ouederni M., Harkin-Jones E., Mayoral B., Hamilton A., Sun D. // Vacuum. 2016. V. 130. P. 63.
- Hari B.S., Kumar K.V.M., Krishnamurthy K., Kumar P.S., Gobinath V.K., Sachinbala R., Rajasekar R. // Mater. Today. 2020. V. 39. P. 1.
- Arbuzov A.A., Muradyan V.E., Tarasov B.P., Sokolov E.A., Babenko S.D. // Russ. J. Phys. Chem. 2016. V. 90. № 5. P. 663.
- 29. Arbuzov A.A., Muradyan V.E., Tarasov B.P. // Izv. RAS Ser. Chem. 2013. V. 62. № 9. P. 1962.
- 30. *Blythe T., Bloor D.* Electrical Properties of Polymers. Cambridge: Cambridge Univ. Press, 2008.