ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А, 2023, том 65, № 5, с. 333–342

РАСТВОРЫ

УДК 541.64:547.398.1

НАРУШЕНИЕ ГОМОЛОГИИ В РЯДУ АМФИФИЛЬНЫХ ГРЕБНЕОБРАЗНЫХ СТАТИСТИЧЕСКИХ СОПОЛИМЕРОВ N-МЕТИЛ-N-ВИНИЛАЦЕТАМИДА И N-МЕТИЛ-N-ВИНИЛАМИНА С УМЕРЕННОЙ ЧАСТОТОЙ ПРИВИВКИ ДОДЕЦИЛЬНЫХ БОКОВЫХ ГРУПП

© 2023 г. А. А. Гостева^{*a*}, О. В. Окатова^{*a*}, И. И. Гаврилова^{*a*}, Е. Ф. Панарин^{*a*}, Г. М. Павлов^{*a*,*}

^аИнститут высокомолекулярных соединений Российской академии наук 199004 Санкт-Петербург, Большой пр., 31, Россия *e-mail: georges.pavlov@mail.ru Поступила в редакцию 25.04.2023 г. После доработки 19.07.2023 г. Принята к публикации 31.08.2023 г.

Серия водорастворимых гребнеобразных сополимеров N-метил-N-винилацетамида и N-метил-Nвиниламина (MBAA–co–MBA) с гидрофобными додецильными боковыми группами C₁₂H₂₅ исследована в 0.1 М растворе NaCl при подавлении полиэлектролитных эффектов методами молекулярной гидродинамики: вискозиметрии, поступательной диффузии и скоростной седиментации в разбавленных растворах. Рассматриваются вопросы гомологии этих амфифильных сополимеров. Результаты вискозиметрии, представленные в координатах lnŋ, от $c[\eta]$, позволяют различать макромолекулы сополимеров по степени их гидрофобности. Мерой гидрофобности амфифильных сополимеров служат положительные значения второй производной B_2 , определяемой из начального хода кривых этих зависимостей. Заметные различия в величинах B_2 для разных сополимеров указывают на то, что они не являются истинным гомологическим рядом. Для квази-гомологического ряда, сформированного из сополимеров MBAA–co–MBAC₁₂H₂₅ · HI с близкими значениями B_2 , получены соотношения Куна–Марка–Хаувинка–Сакурады и проведена оценка равновесной жесткости цепей по адаптированному уравнению Грэя–Блюмфельда–Хирста.

DOI: 10.31857/S2308112023600035, EDN: DDPZKA

введение

Амфифильные сополимеры с гидрофобными фрагментами способны проявлять (индуцировать) самосборку в водной среде. В разбавленных растворах таких сополимеров внутримолекулярная ассоциация определенных групп в макромолекулах способствует образованию физических связей, которые значительно слабее ковалентных связей. При переходе к более концентрированным растворам амфифильных сополимеров происходит образование межцепных связей, что в результате приводит к гелеобразованию. Самосборамфифильных полимеров изучается ка на протяжении многих десятилетий благодаря способности этих материалов предлагать/демонстрировать богатое разнообразие формирующихся как внутри- так и межмолекулярных структур [1-6]. В экспериментальных исследованиях обычно изучают архитектуру амфифильных статистических сополимеров или блок-сополимеров. Ключевое преимущество использования статистических сополимеров заключается в том, что синтез данных сополимеров относительно прост.

Учитывая эту особенность, такие материалы на основе статистических сополимеров имеют хорошие перспективы с точки зрения конечных приложений, поскольку их можно достаточно легко масштабировать [7–9].

Интерес к этим системам обусловлен их многочисленными реальными и возможными применениями, например, молекулярные системы доставки фармацевтических препаратов, модификаторы реологии растворов, адсорбенты и покрытия, флокулянты для очистки сточных вод и стабилизаторы для гетерогенной полимеризации. Амфифильные сополимеры синтезируют на основе как синтетических, так и природных полимеров [10–12].

Широкое изучение самоорганизации амфифильных водорастворимых сополимеров с различной последовательностью распределения гидрофильных и гидрофобных звеньев (статистические, чередующиеся, градиентные сополимеры) вызвано их потенциальной способностью к образованию в водных растворах внутримолекулярных гидрофобных анклавов, а в некоторых случаях унимолекулярных мицелл малых размеров [13–17].

Экспериментальное изучение самоорганизации амфифильных сополимеров проводят с использованием различных экспериментальных методов, таких как реология [18–22], рассеяние электромагнитного излучения [23, 24], метод флуоресценции [25] и другие [6, 26]. Большое число теоретических работ посвящено изучению процессов самоорганизации амфифильных сополимеров на молекулярном и межмолекулярном уровнях [2, 3, 6, 22, 27–31].

В настоящем сообщении представлены и обсуждаются результаты гидродинамических исследований ряда амфифильных гребнеобразных статистических сополимеров N-метил-N-винилацетамида и N-метил-N-виниламина (MBAA-co-MBAC₁₂H₂₅·HI) с умеренной частотой прививки додецильных боковых групп при изменении молекулярной массы основной цепи. Работа является продолжением наших методо- и метрологических изысканий [32-34], посвященных особенностям определения такой фундаментальной величины, как характеристическая вязкость макромолекул при изучении ассоциирующих полимерных систем, а также сопутствующих безразмерных параметров. Полученные для ряда сополимеров, априори полагаемых быть гомологическим рядом, экспериментальные данные демонстрируют отсутствие строгой гомологичности в изученном ряду. В работе рассматривается экспериментальный параметр, который позволяет различать образцы по уровню их гидрофобности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез амфифильных сополимеров N-метил-N-винилацетамида и йодида N-метил-N-виниламина (MBAA—co—MBAC₁₂H₂₅· HI)

Структура исследованных в работе статистических гребнеобразных амфифильных сополимеров N-метил-N-винилацетамида и йодида Nметил-N-виниламина, содержащих 15 мол. % додецильного радикала – C₁₂H₂₅, приведена ниже.

$$\begin{array}{c} + CH_2 - CH + S_{5 \text{ мол. }\%} + CH_2 - CH + S_{15 \text{ мол. }\%} \\ CH_3 - N & CH_3 - NH^+I^- \\ & COCH_3 & CH_3 - NH^+I^- \\ \end{array}$$

Сополимеры N-метил-N-винилацетамида и N-метил-N-виниламина синтезировали частичным гидролизом гомополимера N-метил-N-винилацетамида (**IIMBAA**). Полимеризация гомополимера описана в работе [35]. Гидролиз гомополимера (**IIMBAA**) проводили в 1.8 н HCl до содержания заряженных звеньев 15 мол. %. Содержание заряженных групп в сополимерах определяли аргентометрическим титрованием на кондуктометре ТВЛ-1. Затем полученные сополимеры N-метил-N-винилацетамида и N-метил-Nвиниламина гидрохлорида (MBA–co–MBAA·HCl) алкилировали при температуре 90°C в течение 18 ч иодистым алкилом C₁₂H₂₅I [36]. Содержание алкильных групп в сополимерах определяли аргентометрическим титрованием ионов йода на кондуктометре ТВЛ-1.

Методы

Макромолекулы сополимеров МВАА-со-MBAC₁₂H₂₅ · НІ изучали методами молекулярной гидродинамики при 25°C в 0.1 М NaCl в условиях подавления первичных полиэлектролитных эффектов. Вискозиметрические исследования осуществляли с использованием капиллярного вискозиметра Оствальда. Скоростную седиментацию изучали на аналитической ультрацентрифуге "Beckman XLI" в двухсекторной кювете с оптическим путем 12 мм при скорости вращения ротора 40000 об/мин. Седиментационные интерференционные сканы обрабатывали в программе Sedfit [37]. Для учета концентрационной зависимости исследовали растворы при трех концентрациях в диапазоне 0.0008-0.0035 г/см³. Коэффициенты седиментации s₀ при бесконечном разбавлении рассчитывали из построения, описываемого формулой $s^{-1} = s_0^{-1}(1 + k_s c)$, где s – коэффициент седиментации при данной концентрации, k_s – концентрационный коэффициент Гралена.

Поступательную диффузию исследовали на поляризационно-интерферометрическом диффузометре Цветкова [38] классическим методом образования границы между раствором и растворителем в металлической кювете с тефлоновым вкладышем толщиной 3 см по ходу луча [39]. Концентрации растворов 0.0025-0.0003 г/см³, что соответствует степени разбавленности 0.004 < c[n] << 0.022. Расплывание диффузионной границы фиксировали через определенные промежутки времени с помощью цифровой камеры. Продолжительность опытов составляла 6-15 ч в зависимости от величины характеристической вязкости сополимеров. Диффузионные интерферограммы обрабатывали с использованием программного обеспечения [40]. Дисперсию интерференционных кривых рассчитывали в гауссовом приближении по максимальной ординате и площади [38]. Коэффициент диффузии D вычисляли по наклону экспериментальных зависимостей дисперсии диффузионной границы σ^2 от продолжительно-

сти опыта *t*:
$$D = \left(\frac{\Delta \sigma^2}{\Delta t}\right)/2.$$

Детально методика седиментационно-диффузионного анализа представлена в работах [35, 41– 43]. Фактор плавучести сополимеров рассчитывали по плотности растворов сополимеров, опреде-

Рис. 1. Зависимости Хаггинса $\eta_{yд}/c$ (1) и Крэмера $\ln \eta_r/c$ (2) от концентрации *с* для амфифильного сополимера MBAA–*co*–MBAC₁₂H₂₅ · HI в 0.1 M NaCl (табл. 1, сополимер 8). Цветные рисунки можно посмотреть в электронной версии.

ленной на денситометре Kyoto "Electronics DA-640". Измерения растворов сополимеров проводили как в чистой воде, так и в водно-солевом растворе 0.1 М NaCl. Среднее значение фактора плавучести составило $(1 - v\rho_0) = (0.24_6 \pm 0.04)$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Вискозиметрические результаты

Ранее было показано [32–34], что для достоверного определения значений характеристической вязкости, особенно в случае сложных полимерных систем, необходимо использовать двойное построение зависимостей Хаггинса [44]:

$$\eta_{y_{\text{J}}}/c = [\eta]_{\text{X}} + k_{\text{X}}[\eta]^2 c + \dots$$
(1)

и Крэмера [45]:

$$\ln\eta_{r}/c = [\eta]_{\rm K} + k_{\rm K}[\eta]^{2}c + \dots,$$
(2)

где $\eta_{yg} = \eta_r - 1$ – удельная вязкость раствора, η_{yg}/c – приведенная вязкость, *c* – концентрация полимера в растворе, k_X и k_K – безразмерные параметры Хаггинса и Крэмера соответственно. Оба параметра характеризуют термодинамическое качество растворителя.

На рис. 1 приведен пример такого двойного построения для сополимера 8 в табл. 1. При исследовании амфифильных гребнеобразных сополимеров MBAA–co–MBAC₁₂H₂₅· HI в 0.1 M NaCl нами было установлено, что во всех случаях значения характеристической вязкости [η]_X, получаемые из построения Хаггинса, меньше (в разной мере), чем [η]_K, получаемые из построения Крэмера, при этом k_X существенно превышают 0.5, а k_K имеют положительные значения (табл. 1).

Различие в получаемых отсекаемых отрезках (величинах [η]) при $c \rightarrow 0$ в построениях Хаггинса и Крэмера вызвано ранним проявлением вклада квадратичного по концентрации члена разложения в уравнении Хаггинса (уравнение (1)). Поскольку оба построения *должны приводить к эквивалентным значениям характеристической вязкости* [η], необходимо провести коррекцию построения η_{ya}/c в области малых концентраций. Для этого был предложен следующий подход [32, 33]: формируется система данных, состоящая из нескольких экспериментальных точек зависимости Хаггинса, полученных при наименьших концентрациях растворов, и к ним добавляется точка

Сополимер	$[\eta]_X, см^3/г$	k_X	$[\eta]_K$, см ³ /г	$k_{ m K}$	$k_{\mathrm{X}}^{\mathrm{kopp}}$
1	60 ± 1.0	1.45 ± 0.09	64.3 ± 0.4	$+0.33\pm0.02$	0.88
2	56 ± 4.0	2.3 ± 0.50	63 ± 1.0	$+0.55\pm0.07$	1.23
3	36 ± 3.0	4 ± 1.0	41 ± 2.0	$+1.5\pm0.30$	2.42
4	42 ± 5.0	6 ± 2.0	54 ± 2.0	$+1.3\pm0.20$	2.24
5	64 ± 2.0	1.7 ± 0.20	72 ± 2.0	$+0.30\pm0.07$	0.81
6	25 ± 2.0	6 ± 1.0	29.6 ± 0.5	$+2.1\pm0.10$	3.09
7	20 ± 4.0	9 ± 4.0	26.6 ± 0.07	$+2.2\pm0.20$	3.26
8	12 ± 2.0	16 ± 5.0	18.5 ± 0.9	$+3.2\pm0.50$	4.02
9	16.6 ± 0.8	4.0 ± 0.7	19.2 ± 0.3	$+1.4\pm0.10$	2.20
10	22.4 ± 0.9	1.3 ± 0.3	23.3 ± 0.8	$+0.40\pm0.20$	0.86
11	15.4±0.4	4.2 ± 0.4	17.03 ± 0.03	$+1.93\pm0.02$	2.75

Таблица 1. Характеристическая вязкость [η], определенная по уравнениям Хаггинса [η]_X и Крэмера [η]_K в 0.1 М NaCl, параметры Крэмера $k_{\rm K}$ и Хаггинса $k_{\rm X}$ и корректный параметр Хаггинса $k_{\rm X}^{\rm kopp}$

Сополимер	[η] _K , см ³ /г	$D_0 \times 10^7$, cm ² /c	$s_0 \times 10^{13}$, c	$A_0 imes 10^{10},$ г см ² /с ² К моль ^{1/3}	$M_{\rm sD} \times 10^{-3}$			
1	64.0	2.0	3.1	2.82	156			
2	63.0	2.10	3.2	2.92	153			
3	41.0	2.20	3.3	2.64	151			
4	54.0	2.40	3.6	3.16	151			
5	72.0	1.72	2.8	2.48	149			
6	30.0	2.50	2.9	2.48	117			
7	27.0	3.50	2.7	2.93	78			
8	18.5	3.25	2.5	2.39	77			
9	19.0	3.70	2.0	2.45	54			
10	23.0	4.10	1.8	2.69	44			
11	17	5.75	2.0	3.16	35			

Таблица 2. Коэффициенты диффузии D_0 , седиментации s_0 , характеристическая вязкость, определенная по уравнению Крэмера $[\eta]_K$, гидродинамический инвариант A_0 и молекулярная масса M_{sD} амфифильных сополимеров MBAA–co–MBAC₁, H₂s⁻ HI в 0.1 M NaCl при 25°C

на оси ординат (c = 0), равная величине характеристической вязкости [η], полученной из построения Крэмера (уравнение (2)). По этим точкам проводим параболическую зависимость, а затем получаем уравнение касательной к параболе в точке c = 0, из которого рассчитываем корректное значение параметра Хаггинса [33]. Согласование значения характеристической вязкости $[\eta]_{K} \equiv [\eta]_{X}$ приводит к существенному уменьшению параметра Хаггинса. Корректные значения представлены в табл. 1. Изложенное выше также означает, что для адекватной оценки [η] по Хаггинсу без предложенной корректировки необходимо использовать вискозиметрические данные в значительно меньшем интервале концентраций, чем при построении Крэмера.

Важно заметить, что проявление начальной вогнутости зависимости η_{ya}/c сложно наблюдать без сопоставления обеих зависимостей η_{ya}/c и $\ln \eta_{r}/c$ на одном графике, поэтому при обработке вискозиметрических данных необходимо всегда использовать двойное построение Хаггинса—Крэмера.

Характеристическую вязкость амфифильных сополимеров измеряли при степени разбавления $0.095 < c[\eta] < 0.5$. Несмотря на сильную разбавленность изучаемых растворов амфифильных сополимеров MBAA–*co*–MBAC₁₂H₂₅ · HI, зависимость Хаггинса уже в указанном диапазоне начинает проявлять нелинейность.

Анализируя результаты, представленные в табл. 1, можно заключить, что корректировка значений характеристической вязкости, получаемой из построения Хаггинса, составляет в среднем 15% в сторону увеличения. При этом значения параметра Хаггиса уменьшаются в среднем в два раза соответственно. В связи с этим следует обратить внимание на таблицы значений [η] и $k_{\rm X}$, опубликованные в Polymer Handbook [46]. Можно утверждать, что приведенные в них значения $k_{\rm X} > \approx 0.8$ завышенные, а соответствующие значения [η] занижены, т.е. они не являются корректными и должны быть исключены из рассмотрения.

Молекулярно-гидродинамические параметры

В табл. 2 приведены значения коэффициентов седиментации, диффузии, а также характеристических вязкостей $[\eta]_K$, используя которые рассчитали гидродинамический инвариант по соотношению

$$A_0 = (R[D]^2[s][\eta])^{1/3},$$
 (3)

где $[s] = s_0 \eta_0 / (1 - \upsilon \rho_0) - xарактеристический ко$ эффициент седиментации, $[D] = D_0 \eta_0 / T - xapak$ теристический коэффициент диффузии, *R* – универсальная газовая постоянная, v – парциальный удельный объем полимера, ρ_0 и η_0 – плотность и вязкость растворителя соответственно. Введение гидродинамического инварианта основано на предположении о равенстве размеров макромолекулы в двух разных типах ее движения, поступательного и вращательного [38]. Флуктуации A_0 около среднего значения в гомологическом ряду свидетельствуют о согласованности полученных экспериментальных величин (характеристической вязкости, коэффициентов диффузии и седиментации) и о возможности их дальнейшей интерпретации. Значения гидродинамического инварианта A_0 приведены в табл. 2. Среднее значение A_0 для сополимеров MBAA-co-MBAC₁₂H₂₅· HI оказа-

Рис. 2. Зависимости натурального логарифма относительной вязкости $\ln\eta_r$ от степени разбавления $c[\eta]$ для амфифильных сополимеров MBAA-*co*-MBAC₁₂H₂₅ · HI в водном 0.1 M NaCl (*1-11*), в ДМФА + 0.1 M LiCl (*12*), гомополимеров ПМВАА в H₂O (*13*), сополимеров MBAA-*co*-MBA · HCl 84-16 мол. % в 0.2 M NaCl (*14*). Сополимеры MBAA-*co*-MBAC₁₂H₂₅ · HI расположены в порядке уменьшения гидрофобных взаимодействий (табл. 3). Сплошная линия ($\ln\eta_r = c[\eta], B_2 = 0$) – граница раздела двух областей.

лось равным $A_0 = (2.7 \pm 0.1) \times 10^{-10} \,\mathrm{r} \,\mathrm{cm}^2/\mathrm{c}^2 \,\mathrm{K} \,\mathrm{моль}^{1/3}$, что заметно меньше теоретического значения. Каноническое теоретическое значение гидродинамического инварианта для гауссовых цепей при отсутствии объемных эффектов, полученное с использованием предварительно усредненного гидродинамического тензора Озеена, составляет $A_0^{\text{theor}} \equiv k P_0 / \Phi_0^{1/3} = 3.84 \times \times 10^{-10} \,\text{г см}^2/\text{c}^2 \,\text{K}$ моль^{1/3}, где $P_0 = 5.11$ и $\Phi_0 = 2.86 \times \times 10^{23}$ – канонические значения гидродинамических параметров Флори [38]. Следует отметить, что отличие экспериментального значения A_0^{exp} от теоретического A_0^{theor} неизбежно приводит к разным оценкам длины статистического сегмента Куна А и гидродинамического диаметра d по данным поступательного и вращательного трения, рассчитываемых с использованием канонических значений гидродинамических параметров Флори P_0 и Φ_0 .

Абсолютную молекулярную массу (табл. 2) рассчитывали по уравнению Сведберга с использованием полученных экспериментальных значений s_0 , D_0 и (1– $\upsilon\rho_0$):

$$M_{sD} = \frac{RT}{(1 - \upsilon \rho_0)} \cdot \frac{s_0}{D_0}$$
(4)

Зависимость [η] от MM может быть представлена в виде уравнения Куна–Марка–Хаувинка–Сакурады [η] = $KM^{b_{\eta}}$. Для гибкоцепных полимеров в хорошем растворителе скейлинговый индекс b_{η} находится в пределах $0.5 \le b_{\eta} \le 0.85$ [47]. К таким типам полимерных систем относятся многие гибкоцепные полимеры, в том числе на основе N-виниламинов.

Мера гидрофобных взаимодействий в цепях MBAA-со-MBAC₁₂H₂₅ · HI

Уравнение Крэмера можно записать в координатах зависимости $\ln \eta_r$ от степени разбавления $c[\eta]$. В широком интервале концентраций данная зависимость хорошо описывается полиномом второй степени и позволяет сравнивать полимеры разного химического строения, разной молекулярной массы и в различных растворителях:

$$\ln\eta_r = A + B_1(c[\eta]) + B_2(c[\eta])^2 + \dots$$
 (5)

В области $c[\eta] < 2$, как правило, выполняется условие $A \approx 0$, $B_1 \approx 1$, тогда соотношение (5) преобразуется к виду, соответствующему уравнению (2):

$$\ln\eta_r \approx (c[\eta]) + B_2(c[\eta])^2 \tag{6}$$

Это означает, что вторая производная зависимости вблизи $c[\eta] = 0$ суть параметр Крэмера ($B_2 \approx k_K$). Для полимерных систем, не проявляющих ассоциативных взаимодействий в растворах, величина B_2 отрицательная [32], тогда как для ассоциирующих полимерных систем B_2 , как и k_K – положительны и могут служить мерой гидрофобных взаимодействий в полимерных цепях [34].

Рассмотрим зависимость $\ln \eta_r = f(c[\eta])$ для исследованного ряда сополимеров МВАА-со-МВАС₁₂Н₂₅ · НІ в 0.1 М NaCl и в ДМФА + 0.1 М LiCl, гомополимеров N-метил-N-винилацетамида (ПМВАА) в воде [35] и сополимеров N-метил-N-винилацетамида и N-метил-N-виниламина гидрохлорида (MBAA-co-MBA · HCl 84-16 мол. %) в 0.2M NaCl [48] (рис. 2). Прямая линия, проведенная при условиях $\ln \eta_r = c[\eta], B_2 = 0$, является границей разделения полимерных систем, проявляющих гидрофобно-ассоциирующие взаимодействия (область, где $B_2 > 0$) и гидрофильных полимерных систем (область, где $B_2 < 0$) [32–34]. Оказывается, что сополимеры МВАА-со- $MBAC_{12}H_{25}$ · HI в ДМФА + 0.1 M LiCl, как и гомополимеры ПМВАА в H₂O, и сополимеры МВААco-MBA · HCl в 0.2 М NaCl, образуют практически единую выгнутую зависимость с $B_2 < 0$. Это поведение характеризует набор гибкоцепных гомологов без ассоциативных взаимодействий в термодинамически хороших растворителях. Кроме того, совпадение зависимостей для разных полимерных систем означает, что термодинамическое качество растворителей в сравниваемых системах

том 65 № 5 2023

Рис. 3. Двойная логарифмическая зависимость характеристической вязкости (*1*), коэффициентов поступательной диффузии (*2*) и коэффициентов скоростной седиментации (*3*) от молекулярной массы амфифильных сополимеров MBAA–*co*–MBAC₁₂H₂₅·HI со средним значением $k_{\rm K} = 1.7 \pm 0.3$ (шесть сополимеров), по которым проведены линейные зависимости; *b* – группа сополимеров с минимальным значением параметра Крэмера (четыре сополимера); *c* – третья группа, состоящая из одного сополимера, с максимальным значением $k_{\rm K} = 3.2$.

практически эквивалентно. Таким образом, в органо-солевом растворителе ассоциативные взаимодействия в цепях макромолекул MBAA–*co*– MBAC₁₂H₂₅· HI не проявляются.

Ситуация кардинальным образом изменяется, когда сополимеры MBAA–co–MBAC₁₂H₂₅· HI находятся в водно-солевом в 0.1 М растворе NaCl. Совокупность данных смещается влево от линии 1 (ln $\eta_r = c[\eta], B_2 = 0$) (рис. 2) и образуется система вогнутых зависимостей с различными значениями $B_2 > 0$ для разных сополимеров с одинаковой

Таблица 3. Значения величин параметра Крэмера $k_{\rm K}$ и второй производной B_2 для сополимеров MBAA-*co*-MBAC₁₂H₂₅· HI в 0.1 M NaCl

Сополимер*	<i>B</i> ₂	k _K	$M_{sD} \times 10^{-3}$
8	3.7 ± 0.2	3.2 ± 0.5	77
7	2.3 ± 0.1	2.2 ± 0.2	78
6	2.21 ± 0.09	2.1 ± 0.1	117
11	1.93 ± 0.01	1.93 ± 0.02	35
3	1.7 ± 0.2	1.5 ± 0.3	151
9	1.41 ± 0.07	1.4 ± 0.1	54
4	1.39 ± 0.08	1.3 ± 0.2	151
2	0.62 ± 0.05	0.55 ± 0.07	153
10	0.4 ± 0.1	0.4 ± 0.2	44
1	0.31 ± 0.02	0.33 ± 0.02	156
5	0.25 ± 0.05	0.30 ± 0.07	149

*Номера сополимеров соответствуют номерам сополимеров MBAA-*co*-MBAC₁₂H₂₅· НІ в табл. 1 и табл. 2. степенью прививки (15 мол. %). Поскольку МВАА-со-МВАС₁₂Н₂₅ · НІ являются статистическими сополимерами, такое различие в проявлении гидрофобных взаимодействий может быть связано с неоднородным распределением гидрофобных групп вдоль основной цепи макромолекул. Чем больше значение B_2 , тем сильнее проявляются внутрицепные гидрофобные взаимодействия между гидрофобными группами одной макромолекулы. Строго говоря, изученный ряд теряет в этих условиях свою гомологичность, что обусловлено композиционной неоднородностью сополимеров. Одновременно можно утверждать, что эта зависимость $(\ln \eta_r = f(c[\eta]))$ позволяет дифференцировать полимеры по уровню их гидрофобности, тем самым исследователи получают дополнительные аналитические возможности для оценки степени гидрофобности, предоставляемые вискозиметрией разбавленных растворов гидрофобных сополимеров в селективных растворителях. Однако следует заметить, что для количественного использования величин $k_{\rm K}$ или B_2 необходима их калибровка. Для этого, например, следует синтезировать и исследовать гребнеобразные амфифильные регулярные сополимеры с различными и равномерными распределениями боковых цепей вдоль основной цепи.

В таблице 3 представлены величины параметра Крэмера $k_{\rm K}$ и второй производной B_2 для сополимеров MBAA—co—MBAC₁₂H₂₅· HI в 0.1 M NaCl. Сополимеры расположены по мере уменьшения проявления гидрофобных взаимодействий, в порядке уменьшения величин $k_{\rm K}$ и B_2 .

Считая, что параметры B_2 и $k_{\rm K}$ могут служить мерой гидрофобности полимеров, можно констатировать, что степень гидрофобности изменяется более чем на порядок в изученном ряду. Этот ряд можно разделить на три группы: первая с минимальным средним значением $k_{\rm K} = 0.4 \pm 0.1$ (четыре сополимера), вторая со средним значением $k_{\rm K}$ = 1.7 ± 0.3 (шесть сополимеров) и третья, состоящая из одного сополимера, с максимальным значением $k_{\rm K} = 3.2$.

Уравнения Куна–Марка–Хаувинка–Сакурады для амфифильных сополимеров MBAA–co–MBAC₁₂H₂₅· HI в 0.1 M NaCl

Для дальнейшего обсуждения из табл. 3 выбираем систему сополимеров, характеризующуюся средним значением $k_{\rm K} = 1.7$, которую в первом приближении будем считать гомологическим рядом (*квази-гомологическим*). На рис. 3 представлены построения, позволяющие определить параметры серии сополимеров уравнений Куна–Марка–Хаувинка–Сакурады [η] = $K_{\eta}M^{b_{\eta}}$, $D_0 = K_{\rm D}M^{b_{\rm D}}$, $s_0 = K_{\rm S}M^{b_{\rm S}}$.

В интервале молекулярных масс $35 < M_{sD} \times 10^{-3} < 156$ для серии из шести сополимеров были получены следующие скейлинговые соотношения:

$$[\eta] = 0.01 M^{0.70 \pm 0.1_2}, \quad r = 0.9444 \tag{7}$$

$$D_0 = 2.51 \times 10^{-4} M^{-(0.60 \pm 0.06)}, \quad r = -0.9792 \quad (8)$$

$$s_0 = 3.16 \times 10^{-15} M^{0.40 \pm 0.06}, \quad r = 0.9584$$
 (9)

Между скейлинговыми индексами b_D и b_s хорошо выполняется соотношение: $|b_D| + b_s = 1$, что является тривиальным обстоятельством при подобном способе определения ММ. С учетом погрешности оценок скейлинговых индексов b_η и b_D можно утверждать, что и соотношение $|b_D| = (1 + b_\eta)/3$ может быть легко получено.

S

Наибольшие отклонения точек от проведенных зависимостей наблюдаются на зависимости $lg[\eta]$ от lgM для сополимеров, относящихся к первому и третьему классу. Поскольку зависимость $[\eta] = f(M)$ наиболее чувствительна к размерам полимерных цепей в растворах по сравнению с данными по поступательному трению, это может служить дополнительным подтверждением негомологичности серии амфифильных сополимеров MBAA-*co*-MBAC₁₂H₂₅·HI.

Оценка равновесной жесткости амфифильных сополимеров MBAA—со—MBAC₁₂H₂₅· HI

Для количественной оценки длины статистического сегмента A (длины сегмента Куна), харак-

Рис. 4. Зависимости $[s]N_AP_0(1)$ и $(M^2\Phi_0/\eta)^{1/3}(2)$ от $M^{(1-\varepsilon)/2}$, используемые для оценки статистического сегмента Куна и гидродинамического диаметра из данных поступательного (1) и вращательного трения (2).

теризующей равновесную жесткость молекул MBAA—co—MBAC₁₂H₂₅· HI, использовали теорию Грэя—Блюмфельда—Хирста, рассматривающую зависимость коэффициента поступательного трения червеобразного ожерелья от молекулярной массы с учетом влияния внутримолекулярного протекания и объемных эффектов на размер цепи [42, 49].

При относительной контурной длине L/A > 2.3:

$$[s] N_{A}P_{0} = \frac{3M_{L}^{(1+\varepsilon)/2}}{(1-\varepsilon)(3-\varepsilon)A^{(1-\varepsilon)/2}}M^{(1-\varepsilon)/2} + \frac{P_{0}M_{L}}{3\pi} \left[\frac{\ln A}{d} - \frac{d}{3A} - \varphi(\varepsilon)\right],$$
(10)

где L – контурная длина цепи; A – длина статистического сегмента Куна; [s] – характеристический коэффициент седиментации; N_A – число Авогадро; P_0 – параметр Флори для поступательного трения, зависит от выбранной модели [43]; ε – параметр, характеризующий термодинамическое качество растворителя; d – гидродинамический диаметр цепи; M_L – линейная плотность цепи (масса единицы длины); $\varphi(\varepsilon) = 1.431$ + $+ 2.635\varepsilon + 4.709\varepsilon^2$ – свободный член, описывающий молекулярное протекание.

Термодинамический параметр ε может быть рассчитан из данных по поступательному и вращательному трениям согласно уравнениям $\varepsilon = 2|b_{\rm D}| - 1 = (2b_{\eta} - 1)/3.$

том 65 № 5 2023

В предположении о равномерном распределении массы боковых цепей вдоль основной цепи, что является существенным приближением, рассчитали линейную плотность цепи. Массу единицы длины M_L оценили на основе структурной формулы сополимера и рассчитали по формуле $M_L = M_0/\lambda = 4.68 \times 10^9$ г/см моль, где $M_0 - усред-ненная$ молярная масса повторяющегося звена, а λ – его проекция на направление основной полимерной цепи 2.52×10^{-8} см.

Вискозиметрические данные обработали в предположении эквивалентности гидродинамических размеров макромолекул в явлениях поступательного и вращательного трения [50], используя уравнение

$$[s]N_{\rm A}P_0 = \left(\frac{M^2 \Phi_0}{[\eta]}\right)^{1/3}$$
(11)

С учетом погрешности определения скейлинговых индексов b_{η} и b_D термодинамический параметр ε был принят одинаковым для данных по поступательному и вращательному трению и равным $\varepsilon = 0.14$.

До 80-х годов XX века каноническими значениями параметров Флори для поступательного и вращательного трения считались $P_0 = 5.11$ и $\Phi_0 =$ $= 2.86 \times 10^{23}$ моль⁻¹. Эти величины были получены из теорий J.E. Hearst, W.H. Stockmayer [51] и H. Yamakawa и M. Fujii [52, 53] с усреднением гидродинамического тензора Озеена [54]. Такая комбинация параметров Флори $P_0 = 5.11$ и $\Phi_0 = 2.86 \times$ × 10²³ моль⁻¹ приводит к значению гидродинамического инварианта $A_0 = 3.84 \times 10^{-10}$ г см²/с² К моль^{1/3}. В середине 80-х годов XX века появилась серия работ, в которых гидродинамические взаимодействия при поступательном и вращательном трении оценивались без усреднения Озеена, при помощи машинных экспериментов (метод Монте Карло) [55–57], а также согласно теории ренормгрупп [58]. Эти оценки приводят к большим значениям параметра P_0 для поступательного трения и меньшим значениям параметра Φ_0 для вращательного трения. Например, комбинация гидродинамических параметров $P_0 = 6.20$ и $\Phi_0 = 2.36 \times$ × 10²³ моль⁻¹, полученных из теории ренормгрупп [58], приводит к значению $A_0 = 2.96 \times 10^{-10}$ г см²/с² К моль^{1/3}, которое значительно ближе к полученному среднему значению для исследованной серии сополимеров.

Таким образом, расхождения между экспериментальными и теоретическими значениями гидродинамического инварианта неизбежно будут приводить к расхождениям в оценках равновесной жесткости по данным поступательного и вращательного трения. И они будут тем больше, чем больше эти различия в значениях гидродинамических инвариантов.

Для сополимеров MBAA–*co*–MBAC₁₂H₂₅ · HI, отнесенных к квази-гомологическому ряду, экспериментально полученное значение гидродинамического инварианта A_0 составило $A_0 = (2.8 \pm 0.1) \times$ $\times 10^{-10}$ г см²/с² К моль^{1/3} и заметно отличается от теоретического значения, полученного при канонических значениях параметров P_0 и Φ_0 . В связи с этим равновесную жесткость цепей оценили при значениях параметров $\Phi_0 = 2.36 \times 10^{23}$ моль⁻¹ и $P_0 = 6.20$. На рис. 4 приведены соответствующие построения Грэя–Блюмфельда–Хирста. Величина сегмента Куна $A = (21 \pm 4) \times 10^{-8}$ см, гидродинамический диаметр $d = (10 \pm 7) \times 10^{-8}$ см. Данные обрабатывали как единое целое, т.е. прямая проведена по 12 точкам.

Сравним полученные результаты для исследованного сополимера MBAA-*co*-MBAC₁₂H₂₅ · HI с результатами уточненной оценки равновесной жесткости макромолекул исходного линейного гомополимера ПМВАА, изученного в водных растворах [35]. Оценку проводили для полимеров с высокими MM (в интервале $52 \le M \le 10^{-3} \le 540$). в цепях которых проявляются объемные взаимодействия. Ранее [35] равновесную жесткость оценивали во всем интервале молекулярных масс, включая область малых ММ, где отсутствуют объемные взаимодействия. Для высокомолекулярной серии ПМВАА величина $A_0 = (3.2 \pm 0.1) \times$ $\times 10^{-10}$ г см²/с² К моль^{1/3}, поэтому при расчете использовали значения параметров Флори для поступательного и вращательного трений $P_0 = 5.3$ и $\Phi_0 = 1.9 \times 10^{23}$ моль⁻¹ соответственно. По данным поступательного трения $A_f = (33 \pm 3) \times 10^{-8}$ см, $d_f = (2 \pm 2) \times 10^{-8}$ см, из данных по вращательному трению $A_{\eta} = (29 \pm 1) \times 10^{-8}$ см, $d_{\eta} = (5 \pm 1) \times 10^{-8}$ см. Средние оценки для молекул исходного гомополимера ПМВАА: $A = (31 \pm 2) \times 10^{-8}$ см и $d = (3 \pm 2) \times 10^{-8}$ см и $d = (3 \pm 2) \times 10^{-8}$ $\times 10^{-8}$ см.

Таким образом, длина сегмента Куна молекул ПМВАА заметно больше, чем для изученных гребнеобразных сополимеров MBAA–*co*–MBAC₁₂H₂₅ · HI. Это свидетельствует о более компактной форме цепей сополимеров, имеющих одновременно бо́льший гидродинамический диаметр за счет наличия компактизованных гидрофобных боковых групп.

ЗАКЛЮЧЕНИЕ

Сополимеры MBAA–co–MBAC₁₂H₂₅· HI (85 : 15 мол. %) в 0.1 М NaCl растворе можно дифференцировать по степени гидрофобности, используя вискозиметрические данные в координатах зависимости натурального логарифма $ln\eta_r$ от сте-

пени разбавления $c[\eta]$. Значение второй производной B_2 зависимости $\ln\eta_r$ от $c[\eta]$ и параметр Крэмера $k_{\rm K}$ ($B_2 \approx k_{\rm K}$ при бесконечном разбавлении $c \rightarrow 0$) являются мерой гидрофобности полимеров.

Значение B_2 должно иметь одинаковое значение в полимер-гомологическом ряду. Для изученных MBAA-*co*-MBAC₁₂H₂₅ · HI в 0.1 M NaCl *на-блюдается система вогнутых зависимостей* с различными значениями $B_2 > 0$ для разных сополимеров. Таким образом, серия сополимеров MBAA-*co*-MBAC₁₂H₂₅ · HI не является гомологическим рядом.

Чем больше значение B_2 , тем сильнее проявляются гидрофобные взаимодействия между гидрофобными группами одной макромолекулы MBAA—co—MBAC₁₂H₂₅· HI в 0.1 M NaCl.

В органо-солевом растворителе ДМФА+0.1 М LiCl величина B_2 имеет отрицательное значение для всех сополимеров MBAA-co-MBAC₁₂H₂₅ · HI, так же, как и для гомополимеров ПМВАА в водном растворе, и для сополимеров МВАА-со-МВА в водно-солевом растворе. В этих условиях ассоциативные взаимодействия в цепях сополимера MBAA-co-MBAC₁₂H₂₅· HI не проявляются. Одинаковая отрицательная величина В₂ для серии сополимеров MBAA-co-MBAC₁₂H₂₅ · HI в органическом растворителе свидетельствует о том, что неравномерное распределение алифатических боковых групп в статистическом гребнеобразном сополимере не может быть детектировано в термодинамически хорошем растворителе как для водорастворимой основной цепи, так и для боковой алифатической, т.е. в отсутствие гидрофобных взаимодействий. Иными словами, в таких условиях основная и боковые цепи сополимера теряют свою индивидуальность, т.е. амфифильные сополимеры не отличаются от полимергомологов, хотя ими не являются. При этом и амфифильный МВАА-со-МВАС₁₂Н₂₅ · HI, и полимеры ПМВАА и МВАА-со-МВА · HCl, не имеющие гидрофобных компонентов, демонстрируют практически одно и то же значение B_{2} .

Для квази-гомологического ряда, сформированного из сополимеров MBAA–co–MBAC₁₂H₂₅· HI с близкими значениями B_2 , получены зависимости Куна–Марка–Хаувинка–Сакурады.

Равновесную жесткость макромолекул МВАА-*co*-МВАС₁₂H₂₅ · НІ оценили по уравнению Грэя-Блюмфельда-Хирста. Длина сегмента Куна $A = 21 \pm 4 \times 10^{-8}$ см, гидродинамический диаметр $d = 10 \pm 7 \times 10^{-8}$ см.

Длина сегмента Куна изученных молекул гребнеобразных сополимеров MBAA–*co*–MBAC₁₂H₂₅ · · НІ заметно меньше, чем для цепей исходного гомополимера ПМВАА. Это свидетельствует о более компактной форме цепей сополимеров. В то же время их гидродинамический диаметр заметно больше за счет боковых групп, компактизованных ("скукожившихся") в водном растворе у основной цепи.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (тема № 122012100171-8 (Институт высокомолекулярных соединений Российской академии наук)).

СПИСОК ЛИТЕРАТУРЫ

- 1. Winnik M.A., Yekta A. // Curr. Opin. Colloid Interface Sci. 1997. V. 2. № 4. P. 424.
- Rubinstein M., Dobrynin A.V. // Trends Polym. Sci. 1997. V. 5. P. 181.
- Dobrynin A.V., Rubinstein M. // Macromolecules. 1999.
 V. 32. № 3. P. 915.
- 4. Senan C., Meadows J., Shone P.T., Williams P.A. // Langmuir. 1994. V. 10. № 7. P. 2471.
- 5. Wolff C., Silberberg A., Priel Z., Layec-Raphalen M.N. // Polymer. 1979. V. 20. № 3. P. 281.
- 6. Associative Polymers in Aqueous Media / Ed. by *J.E. Glass.* Washington: Am. Chem. Soc., 2000.
- Imai S., Hirai Y., Nagao C., Sawamoto M., Terashima T. // Macromolecules. 2018. V. 51. № 2. P. 398.
- 8. *Hattori G., Hirai Y., Sawamoto M., Terashima T. //* Polym. Chem. 2017. V. 8. № 46. P. 7248.
- 9. Li L., Raghupathi K., Song C., Prasad P., Thayumanavan S. // Chem. Commun. 2014. V. 50. № 88. P. 13417.
- 10. *Esquenet C., Terech P., Boué F., Buhler E. //* Langmuir. 2004. V. 20. № 9. P. 3583.
- 11. *Rinaudo M.* // Carbohydr. Polymers. 2011. V. 83. № 3. P. 1338.
- 12. Lopez C.G., Colby R.H., Cabral J.T. // Macromolecules. 2018. V. 51. № 8. P. 3165.
- Ma Y., Cao T., Webber S.E. // Macromolecules. 1998.
 V. 31. № 6. P. 1773.
- 14. Yusa S.-i., Sakakibara A., Yamamoto T., Morishima Y. // Macromolecules. 2002. V. 35. № 27. P. 10182.
- 15. Ordanini S., Cellesi F. // Pharmaceutics. 2018. V. 10. № 4. P. 209.
- Wang X., Li L., He W., Wu C. // Macromolecules. 2015. V. 48. № 19. P. 7327.
- 17. Kanno R., Tanaka K., Ikami T., Ouchi M., Terashima T. // Macromolecules. 2022. V. 55. № 12. P. 5213.
- Pabon M., Corpart J.-M., Selb J., Candau F. // J. Appl. Polym. Sci. 2002. V. 84. № 7. P. 1418.
- 19. Kujawa P., Audibert-Hayet A., Selb J., Candau F. // Macromolecules. 2006. V. 39. № 1. P. 384.
- 20. Abdala A.A., Wu W., Olesen K.R., Jenkins R.D., Tonelli A.E., Khan S.A. // J. Rheol. 2004. V. 48. № 5. P. 979.
- Chassenieux C., Nicolai T., Benyahia L. // Curr. Opin. Colloid Interface Sci. 2011. V. 16. № 1. P. 18.
- 22. Jiang N., Zhang H., Tang P., Yang Y. // Macromolecules. 2020. V. 53. № 9. P. 3438.

- Neal T.J., Beattie D.L., Byard S.J., Smith G.N., Murray M.W., Williams N.S.J., Emmett S.N., Armes S.P., Spain S.G., Mykhaylyk O.O. // Macromolecules. 2018. V. 51. № 4. P. 1474.
- 24. *Kawata T., Hashidzume A., Sato T. //* Macromolecules. 2007. V. 40. № 4. P. 1174.
- Ueda M., Hashidzume A., Sato T. // Macromolecules. 2011. V. 44. № 8. P. 2970.
- 26. Macromolecular Self-Assembly / Ed. by L. Billon, O. Borisov. Hoboken: Wiley, 2016.
- Dobrynin A.V., Rubinstein M. // Macromolecules. 2000.
 V. 33. № 21. P. 8097.
- Limberger R.E., Potemkin I.I., Khokhlov A.R. // J. Chem. Phys. 2003. V. 119. № 22. P. 12023.
- Vasilevskaya V.V., Markov V.A., ten Brinke G., Khokhlov A.R. // Macromolecules. 2008. V. 41. № 20. P. 7722.
- Zhang Z., Huang C., Weiss R.A., Chen Q. // J. Rheol. 2017. V. 61. № 6. P. 1199.
- Zhang Z., Chen Q., Colby R.H. // Soft Matter. 2018.
 V. 14. № 16. P. 2961.
- Gosteva A., Gubarev A.S., Dommes O., Okatova O., Pavlov G.M. // Polymers. 2023. V. 15. № 4.
- Pavlov G.M., Gosteva A.A. // Polymer Science A. 2022. V. 64. № 6. P. 586.
- Pavlov G.M., Gosteva A.A., Okatova O.V., Dommes O.A., Gavrilova I.I., Panarin E.F. // Polym. Chem. 2021. V. 12. № 15. P. 2325.
- Pavlov G.M., Okatova O.V., Mikhailova A.V., Ulyanova N.N., Gavrilova I.I., Panarin E.F. // Macromol. Biosci. 2010. V. 10. № 7. P. 790.
- 36. Панарин Е.Ф., Гаврилова И.И. // Высокомолек. соед. Б. 1977. V. 19. № 4. Р. 251.
- 37. Schuck P. // Biophys. J. 2000. V. 78. № 3. P. 1606.
- Tsvetkov V.N. // Rigid—Chain Polymers: Hydrodynamic and Optical Properties in Solution. New York: Plenum Press, 1989.
- З9. Лавренко П.Н., Окатова О.В. // Высокомолек. соед. А. 1977. V. 19. № 11. Р. 2640.
- Lavrenko V.P., Gubarev A.S., Lavrenko P.N., Okatova O.V., Pavlov G.M., Panarin E.F. // Ind. Lab. Materials Diagnostics. 2013. V. 79. P. 33.

- 41. Pavlov G.M., Okatova O.V., Gubarev A.S., Gavrilova I.I., Panarin E.F. // Macromolecules. 2014. V. 47. № 8. P. 2748.
- 42. Pavlov G.M., Perevyazko I.Y., Okatova O.V., Schubert U.S. // Methods. 2011. V. 54. № 1. P. 124.
- 43. *Pavlov G.M.* Different Levels of Self-Sufficiency of the Velocity Sedimentation Method in the Study of Linear Macromolecules Analytical Ultracentrifugation Instrumentation, Software, and Applications/ Ed. by *S. Uchi-yama, F. Arisaka, W.F. Stafford, T. Laue.* Tokyo: Springer 2016.
- 44. *Huggins M.L.* // J. Am. Chem. Soc. 1942. V. 64. № 11. P. 2716.
- 45. *Kraemer E.O.* // Industr. Eng. Chem. 1938. V. 30. № 10. P. 1200.
- 46. Concentration Dependence of the Viscosity of Dilute Polymer Solutions: Huggins and Schulz-Blaschke Constants. In The Wiley Database of Polymer Properties / Ed. by *C. Schoff.* Hoboken: Wiley, 2003.
- Perevyazko I., Gubarev A.S., Pavlov G.M. // Molecular Characterization of Polymers. A Fundamental Guide / Ed. by M.I. Malik, J. Mays, M.R. Shah. Amsterdam: Elsevier, 2021. Ch. 6.
- Dommes O.A., Okatova O.V., Kostina A.A., Gavrilova I.I., Panarin E.F., Pavlov G.M. // Polymer Science C. 2017. V. 59. № 1. P. 125.
- 49. Gray H.B., Bloomfield V.A., Hearst J.E. // J. Chem. Phys. 1947. V. 46. P. 1493.
- 50. Pavlov G.M. // Eur. Phys. J. E. 2007. V. 22. № 2. P. 171.
- Hearst J.E., Stockmayer W.H. // J. Chem. Phys. 1962.
 V. 37. № 7. P. 1425.
- Yamakawa H., Fujii M. // Macromolecules. 1973. V. 6. № 3. P. 407.
- 53. *Yamakawa H., Fujii M.* // Macromolecules. 1974. V. 7. № 1. P. 128.
- 54. *Tsvetkov V.N., Eskin V.E., Frenkel S.Y.* // Structure of Macromolecules in Solution. Boston: The National Lending Library for Science and Technology, 1971.
- 55. Zimm B.H. // Macromolecules. 1980. V. 13. № 3. P. 592.
- 56. Garcia de la Torre J.G., Jimenez A., Freire J.J. // Macromolecules. 1982. V. 15. № 1. P. 148.
- 57. Garcia de la Torre J.G., Martínez L.M., Tirado M., Freire J. // Macromolecules. 1984. V. 17. № P. 2715.
- 58. *Oono Y.* // Adv Chem Phys. 1985. V. 61. № P. 301.