———— ПОЛИЭЛЕКТРОЛИТЫ ———

УДК 541(13+64)

ПОЛИМЕРНЫЕ ЭЛЕКТРОЛИТЫ НА ОСНОВЕ ПОЛИБЕНЗИМИДАЗОЛА, ПОЛИ(ВИНИЛИДЕНФТОРИД-со-ГЕКСАФТОРПРОПИЛЕНА) И ИОННЫХ ЖИДКОСТЕЙ

© 2023 г. Л. П. Сафонова^{*a*}, Л. Э. Шмуклер^{*a*,*}

^аИнститут химии растворов им. Г.А. Крестова Российской академии наук 153045 Иваново, ул. Академическая, 1, Россия *e-mail: les@isc-ras.ru Поступила в редакцию 07.02.2023 г. После доработки 17.04.2023 г. Принята к публикации 03.07.2023 г.

Продолжительное время внимание исследователей привлекают ионные жидкости – соли с температурой плавления ниже 100°C. Введение ионных жидкостей в полимерную матрицу позволяет получить полимерные электролиты с высокой электропроводностью и электрохимической стабильностью, а мембраны на их основе характеризуются хорошими механическими свойствами. Многообразие полимеров/сополимеров, используемых в качестве матрины, и практически безграничное количество ионных жидкостей, получаемых варьированием катион-анионного состава и дополнительной модификацией химической структуры ионов, позволяет получать полимерные электролиты с широким спектром физико-химических свойств. В данной работе основное внимание сосредоточено на результатах, опубликованных за последние 10 лет и посвященных исследованию электролитов для электрохимических устройств, в которых используются мембраны на основе полибензимидазола (meta-PBI), сополимера поливинилиденфторид-со-гексофторпропилена (PVdF-HFP) и аммониевых и имидазолиевых ионных жидкостей. В работе рассмотрены различные типы полимерных электролитов, различающихся составом и областями применения: полимер + ионная жидкость, полимер + ионная жидкость + кислота, полимер + ионная жидкость + соль лития/натрия. Кроме того, обсуждено влияние наполнителей, которые вводятся в приведенные выше полимерные электролиты для улучшения их свойств и решения проблемы удержания ионной жидкости внутри мембраны. В данной работе представлен обширный фактический материал (в виде таблиц) по электропроводности и термической стабильности более 100 полимерных электролитов, который будет востребован широкой аудиторией читателей журнала.

DOI: 10.31857/S2308112023700566, EDN: VDZUKH

введение

Продолжительное время внимание исследователей привлекают ионные жидкости - соли с температурой плавления ниже 100°С. Благодаря своим уникальным свойствам, таким как низкое давление паров, высокая термическая и электрохимическая стабильность, низкая воспламеняемость, высокая ионная проводимость, они находят применение в различных областях: в органическом синтезе, в качестве материалов для электрохимических накопителей и преобразователей энергии. для разделения и выделения веществ, в качестве катализаторов и теплоносителей [1-6]. В настоящее время стремительно растет количество обзоров, публикаций и патентов, посвященных приготовлению, свойствам и использованию ионных жидкостей [7-16]. С их помощью синтезируют новые материалы [5, 17–21], их исследуют как потенциальные растворители в

процессах экстракции и разделения веществ [22– 26], а также в качестве электролитов для различных электрохимических устройств [27–34]. Широкое применение ионные жидкости нашли в биотехнологии и фармацевтике [35–38]. К сегодняшнему дню синтезировано и охарактеризовано достаточно большое количество ионных жидкостей, обзор по свойствам, структуре и применению которых дан в ряде работ [16, 39–48].

Ионные жидкости, используемые в различных электронных устройствах, могут выступать в качестве электролитов как в чистом виде, так и в составе полимерного электролита. Можно выделить два основных класса полимерных электролитов на основе ионных жидкостей: полимер + ионная жидкость и полимеризованная ионная жидкость. Полимеризованные ионные жидкости получают либо полимеризацией мономерной ионной жидкости, либо модификацией полимера. В данном обзоре рассмотрены полимерные электролиты типа полимер + ионная жидкость, а также композитные системы на их основе. В таких системах перенос заряда осуществляется преимущественно по жидкой фазе, при этом роль полимерной матрицы заключается в способности удерживать жидкий электролит в своих порах. В работе [49] рассмотрен механизм ионного транспорта в таких полимерных электролитах (liquid-like mechanism) и показано, что ионная проводимость коррелирует с сегментарной релаксацией полимерной цепи в отличие от суперионных стекол и кристаллов, в которых диффузия ионов происходит в практически замороженной структуре по механизму, реализуемому в твердых телах (solid-like mechanism). Поскольку ионная жидкость, введенная в полимерную матрицу, выполняет роль пластификатора, такие полимерные электролиты называют также гелевыми. Кроме того, введение ионной жидкости в полимерную матрицу позволяет получить полимерные электролиты с высокой электропроводностью и электрохимической стабильностью, а мембраны на их основе характеризуются гибкостью и хорошими механическими свойствами. Многообразие полимеров/сополимеров, используемых в качестве матрицы, и практически безграничное количество ионных жидкостей, получаемых путем варьирования катион-анионного состава или дополнительной модификацией химической структуры ионов, позволяет получать полимерные электролиты с широким спектром физико-химических свойств. По данным Scopus практически все 100% публикаций по полимерным электролитам на основе ионных жидкостей (выборка по ключевым словам Ionic Liquid Polymer Electrolytes) связана с их использованием в батарейках, суперконденсаторах, топливных и солнечных ячейках. Если для суперконденсаторов не имеет значения, за счет каких ионов осуществляется транспорт заряженных частиц, то в топливном элементе важно обеспечить высокую проводимость протона. В связи с этим в суперконденсаторах чаще всего используются апротонные ионные жидкости, в то время как в топливных ячейках протонные ионные жидкости. В протонпроводящих мембранах состава полимер + ионная жидкость + кислота ионная жидкость может выступать как в качестве пластификатора, так и участвовать в протонном переносе.

Благодаря своим свойствам ионные жидкости являются хорошей альтернативой органическим растворителям, используемым в полимерных электролитах для литиевых батарей (полимер + ионная жидкость + соль лития/натрия), поскольку эффективность использования органических растворителей ограничивается их летучестью, высокой воспламеняемостью и механической нестабильностью при высоких температурах. Кроме того, одним из факторов, ограничивающих срок службы литий-металлических батарей, является рост дендритов лития. В работах [50–52] было показано, что полимерные электролиты на основе ионных жидкостей могут подавлять их рост.

Улучшение механических, термических и химических свойств полимерных электролитов возможно путем введения в их состав наполнителей, в качестве которых используются, например, диоксиды кремния, титана, циркония, оксид графена, углеродные нанотрубки, слоистые силикаты [53–59]. Наполнитель может быть как ковалентно связан с полимерной матрицей или ионной жидкостью, так и не связан с ними. Для увеличения электропроводности в состав полимерных электролитов могут вводиться пластификаторы, в качестве которых выступают такие органические растворители как PC, EC, ДМС.

В последнее время появился ряд обзоров, посвященных полимерным электролитам на основе ионных жидкостей (полимер–ионная жидкость) [60–64]. Так, в работе [64] приведена историческая справка по методам приготовления и исследования свойств таких полимерных электролитов, описаны способы их модификации и области практического применения. Отмечается, что ключевыми барьерами для широкого применения полимерных электролитов на основе ионных жидкостей все еще являются высокая стоимость и относительно низкая механическая прочность.

Среди основных направлений исследований в области создания надежных и высокоэффективных полимерных электролитов (полимер-ионная жидкость) рассматривается возможность использования природных макромолекул с целью снижения стоимости, композитных полимерных систем для усиления и повышения механической прочности, получение полимерных (полимеризованных) ионных жидкостей с улучшенными электрохимическими свойствами, внедрение наноматериалов для улучшения поверхностных контактов и ионного транспорта. В работах [65, 66] описана роль различных добавок (пластификаторов, наполнителей) для разработки полимерных электролитов с заданными свойствами.

В работе [61] обсуждаются последние достижения в области создания инновационных полимерных электролитов на основе ионных жидкостей (полимер—ионная жидкость) для их применения в производстве и хранении энергии. Особое внимание уделено влиянию ионной жидкости на изменение термической стабильности, температур плавления и стеклования, на степень кристалличности полимерной матрицы, а также на электропроводность полимерных электролитов. Было установлено, что при повышении содержания ионной жидкости в полимере происходит рост ионной проводимости как за счет увели-

чения количества свободных носителей заряда, так и за счет пластифицирующего эффекта ионной жидкости на кристаллические сегменты полимерной матрицы. Пластифицирующий эффект ионной жидкости также приводит к снижению температур плавления и стеклования, уменьшению степени кристалличности и механической стабильности полимерного электролита. Полимерные мембраны на основе ионной жидкости термически стабильны в широком температурном диапазоне ~200-400°С. Общий вывод данного обзора [61] заключается в том, что полимерные электролиты на основе ионной жидкости являются превосходной альтернативой полимерных электролитов, получаемым иммобилизацией жидких электролитов (растворов соли в апротонных полярных органических растворителях, таких как EC, PC, DMF и т.д.) в полимерную матрицу.

В работах [67-72] представлен обзор литературы по протонообменным мембранам на основе протонных ионных жидкостей, иммобилизованных в полимер, для применения их в топливных ячейках. Авторами проанализированы текущие проблемы, стоящие перед развитием этой многообещающей категории мембран, а также рекомендованы направления для дальнейших исследований. Основное внимание в работах [67, 68, 70] уделено электролитным мембранам, изготовленным из ионных жидкостей в сочетании с полибензимидазолом. Показано, что увеличение электропроводности полимерных электролитных мембран может быть достигнуто как введением наполнителей, таких как материалы на основе углерода, неорганические наполнители, металлоорганические каркасы, так и модификацией структуры полибензимидазола [68]. В работах [69, 71] обсуждается роль протонных ионных жидкостей в полимерных мембранах разного типа: Нафион, сульфированный полиэфирэфиркетон, поливиниловый спирт, полибензимидазол, сульфированный полиимид, поли(винилиденфторид-со-гексафторпропилен). Поскольку наиболее распространенным и коммерчески доступным материалом полимерной электролитной мембраны является полимер перфторсульфоновой кислоты (Нафион), то часто свойства любого нового мембранного материала сравниваются с его характеристиками [73-78]. Однако при температурах свыше 100°С у мембраны Нафион проявляются недостатки, связанные с ее дегидратацией. приводящей к снижению проводимости. Использование ионных жидкостей позволяет создать полимерные электролиты, работающие при температурах выше 100°С в безводных условиях. В работе [69] рассмотрены и пути решения основных проблем, возникающих при использовании протонных ионных жидкостей в полимерной мембране, которые вызваны выщелачиванием и плохой механической стабильностью при повышенных температурах, показана перспективность использования гибридных (композиционных) мембран полимер—ионная жидкость—неорганический наполнитель для применения их в высокотемпературных топливных элементах.

В работах [28, 79-82] рассмотрены электрохимические и физико-химические свойства как самих ионных жидкостей, так и полимерных электролитов на их основе, которые имеют решающее значение для использования их в литий-ионных аккумуляторах и суперкоденсаторах. В работе [81] обобщены последние достижения в области создания электролитов на основе ионных жидкостей для литий-ионных батарей. Показано, что физико-химические свойства таких электролитов, как правило, определяются химическим составом и катион-анионными взаимодействиями, а их термическая стабильность (температура начала разложения выше 200°С) обеспечивает превосходные электрохимические характеристики литий-ионных батарей в диапазоне высоких температур. Кроме того, показано, что многие электролиты на основе полимерных электролитов обладают более широким электрохимическим окном, чем коммерческие электролиты на органической основе, что позволяет использовать их в качестве высоковольтных катодных материалов. Более того, рациональный дизайн гибридных электролитов на основе ионных жидкостей, включая гибридный электролит ионная жидкость-органический растворитель, смешанный катион/анион электролит и гибридный электролит ионная жидкость-вода, может значительно улучшить электрохимические характеристики, что открывает большие перспективы для модификации литий-ионных батарей.

В обзоре [83] проведен сравнительный анализ свойств гибридных электролитов для суперконденсаторов, состав которых определяется различной комбинацией следующих компонентов: вода, органический растворитель, ионная жидкость, полимер. В новых гибридных электролитах отмечен синергетический эффект при смешении компонентов, приводящий к улучшению электрохимических характеристик суперконденсаторов, а именно расширению рабочего окна напряжений, увеличению ионной проводимости и стабильности.

Методы получения и изучения полимерных электролитов на основе ионных жидкостей

Методы получения полимерных электролитов, состоящих из полимерной матрицы и ионной жидкости, можно разделить на две категории: допирование полимера ионной жидкостью (рис. 1, I) и полимеризация или сшивка мономеров в ионной жидкости (рис. 1, II).

Рис. 1. Схематическое изображение процессов приготовления полимерных электролитов на основе ионной жидкости. Взято из работы [84]. Цветные рисунки можно посмотреть в электронной версии.

Допирование полимеров ионной жидкостью проводят либо методом пропитки (swelling method) полимера ионной жидкостью, либо методом отливки из pacтвора (casting method), при котором полимер и ионную жидкость сначала растворяют в органическом растворителе, затем разливают и сушат полученный раствор на подложке. Метод отливки позволяет управлять концентрацией ионной жидкости в полимерном электролите, а также создавать композитные материалы путем введения в раствор неорганических наполнителей. При этом следует отметить, что использование органических растворителей делает данный метод экологически небезопасным. Пропитка подготовленной полимерной матрицы ионной жидкостью — простой метод получения полимерных электролитов. Однако диапазон состава такого полимерного электролита ограничен максимальной способностью к набуханию полимера в ионной жидкости, в то же время при таком способе получения полимерных электролитов есть возможность управлять морфологией полимерной матрицы.

Благодаря хорошей растворимости большинства обычных мономеров в ионных жидкостях проведение процесса полимеризации/сшивки непосредственно в ионной жидкости позволяет получить полимерные электролиты с высокой ионной проводимостью. При данном подходе важным фактором является совместимость между полимером и ионной жидкостью.

Поскольку основными областями использования полимерных электролитов являются электрохимические устройства, наиболее важные характеристики для них — электропроводность, электрохимическое окно, числа ионного переноса. Для определения электрохимического окна применяют метод вольтамперометрии с линейной разверткой, электропроводность оценивают методом импедансной спектроскопии. Чтобы найти числа переноса, можно использовать такие методы, как метод поляризации Максвелла—Вагнера, поляризационной тест постоянного тока, комбинированный метод Брюса—Винсента.

Наряду с важными электрохимическими свойствами полимерные электролиты должны обладать также высокой термической стабильностью, для анализа которой применяется метод термогравиметрии, и механической прочностью. Кроме того, метод дифференциальной сканирующей калориметрии позволяет определять температуру фазовых переходов, происходящих в полимерных электролитах при нагревании. Для оценки стабильности мембран в окислительной среде, имеющей важное значение при использовании их в топливных ячейках, применяется реактив Фентона.

Особое внимание при изучении полимерных электролитов уделяется выявлению зависимости их свойств от структуры и характера взаимодействий ионной жидкости с функциональными группами полимера. Так, метод рентгеновской дифракции дает возможность установить одновременное присутствие кристаллических И аморфных областей в полимерах, сканирующая электронная и просвечивающая микроскопия позволяют судить о морфологии поверхности и поперечного сечения мембран, с использованием спектральных методов (ИК, КР, ЯМР) исследуются возможные взаимодействия между компонентами полимерного электролита.

В данном обзоре основное внимание сосредоточено на работах, опубликованных за последние 10 лет и посвященных исследованию электролитов для электрохимических устройств, в которых используются мембраны на основе полибензимидазола (PBI), сополимера поли(винилиденфторид-со-гексафторпропилена) (**PVdF-HFP**) с алкиламмониевыми и алкилимилазолиевыми ионными жидкостями, которые являются наиболее широко изученными электролитами среди других ионных жидкостей. В качестве матриц в электролитных мембранах широко применяются полимеры PVdF-HFP и PBI благодаря своей высокой химической, термической и механической стабильности. Более 30% публикаций в приведенной выше выборке в Scopus посвящено изучению мембран на основе именно этих полимеров. Выбор алкиламмониевых и алкилимидазолиевых ионных жидкостей обусловлен тем, что их свойства являются наиболее широко изученными среди других ионных жидкостей.

В настоящей работе рассмотрены различные типы полимерных электролитов на основе ионных жидкостей, различающихся составом и областями применения: полимер + ионная жидкость, полимер + ионная жидкость + кислота, полимер + ионная жидкость + соль лития/натрия, а также рассмотрено влияние различных наполнителей на свойства указанных выше полимерных электролитов.

Полимерные электролиты на основе полибензимидазола

Основной областью применения полимерных электролитов, в которых в качестве полимерной матрицы используются полибензаимидазолы ([поли(2,2'-(1,3-фенилен)-5,5'-ди(бензимидазол)] – meta-PBI, [поли(2,2'-(1,4-фенилен)-5,5'ди(бензимидазол)] - para-PBI, [поли(2, 5-бензимидазол)] — **AB-PBI**, [PBI на основе пиридина] РРВІ, [поли-(2,2'-(2,5-дигидрокси-1,4-фенилен) 5,5'-бибензимидазол)] – 2OH-PBI и другие), является топливный элемент (топливная ячейка).

Наиболее широко исследованными полибензаимидазолами являются meta-PBI и AB-PBI, первому из которых посвящен данный обзор.

Поли-2,2'-(м-фенилен)-5,5'-ди(бензимидазол) представляет собой ароматический гетероциклический полимер

Полибензаимилазол имеет жесткую стержнеподобную молекулярную структуру с обширными Н-связями между молекулярными цепями и π-πукладкой, что ограничивает его растворение во многих органических растворителях. Он отличается высокой химической и термической (до 310°С) стабильностью, обладает отличными механическими свойствами, хорошей влагоотдачей

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

и термоокислительной стабильностью (выше 80°С). В табл. 1 приведены состав и некоторые характеристики полимерных электролитов на основе полибензаимидазола и ионной жидкости.

В работах [68-71, 104-106] обобшены последние достижения в области применения композитных мембран на основе полибензимидазола в высокотемпературных топливных элементах.

Полимерный электролит (полибензаимидазол ионная жидкость)-кислота

Чистый полибензаимидазол имеет низкую протонную проволимость (10⁻⁹ мСм/см), поэтому для достижения высокой электропроводности его допируют кислотой. В полибензаимидазоле, допированном кислотами, перенос протона происходит в основном по механизму Гротгуса через протяженную сеть водородных связей. Этот механизм обеспечивает протонную проводимость в отсутствие увлажнения. Полибензаимидазол может быть допирован множеством различных неорганических кислот, однако наиболее часто используется фосфорная кислота из-за ее хорошей термической стабильности и низкого давления паров [105, 107-114]. Электропроводность РВІмембраны, допированной фосфорной кислотой, зависит от температуры, уровня допирования и может достигать 140 мСм/см при 160°С [115]. Однако пиролиз фосфорной кислоты при температурах выше 90°С, коррозия катализатора, вымывание кислоты и ухудшение механических свойств в процессе эксплуатации приводит к снижению электропроводности мембран. Для улучшения механических свойств и повышения электропроводности мембраны PBI-H₃PO₄ полимерную матрицу допируют ионной жидкостью. Если ионная жидкость является протонной, она может также участвовать в процессе переноса протона. Так, в работе [88] была получена полимерная композиционная мембрана PBI-DEMA/TFSI с мольным соотношением ионная жидкость : полибензаимидазол, равным 1 и 2, в которую в дальнейшем была инкорпорирована H₃PO₄. Ионная жидкость в полученных мембранах действует как пластификатор, делая их более гибкими, а также препятствует процессу вымывания кислоты из мембраны. Для проверки эффективности работы полученных мембран в топливной ячейке проведено их тестирование в собранном мембранном электродном ансамбле. Максимальная удельная мощность была получена при 200°С и достигала 0.32 Вт/см² при 900 мА/см².

В работе [100] аналогичным образом были получены мембраны (РВІ-ионная жидкость)-Н₃РО₄, где в качестве ионной жидкости выступали соли с катионом 1-бутил-3-метилимидазолия (BMIm) и анионами различных кислот, а содержание ион-

№ 4 2023 том 65

САФОНОВА, ШМУКЛЕР

Мембрана	RH, %	<i>T</i> , °C	к, мСм/см	T_{dec} , °C	Применение	Литература	
Полимер + ионная жидкость (мас. %)							
PBI–DEMA/TfO (1, 2, 3, 4) ^a	10-40	60–90	0.1 (80°C)	435	Топливная ячейка	[85]	
PBI-DEMA/TfO (37.5-60%)	AH	100-250	108.9(250°C)	310	То же	[86]	
PBI-DEMA/TfO (33-83%)	AH	40-160	20.73 (160°C)	230	«	[87]	
PBI–DEMA/TFSI (1, 2) ^a	AH	80-180	0.3 (180°C)	250	*	[88]	
PBI–DEA/HSO ₄ (3–12) ^a	0-16	25-200	30 (160°C)*	200	*	[89]	
PBI–SEMA/TfO (1.5) ^a	30	100	2.68	380	*	[90]	
PBI-MIm/TFSI (37.5-60%)	AH	100-250	45 (250°C)*	335	*	[86]	
PBI-EMIm/TfO (37.5-60%)	AH	100-250	46 (250°C)*	336	*	[86]	
PBI–BIm/TfO (1.35, 2.2, 3.2) ^a	AH	30-145	1.55 (145°C)	180	«	[91]	
PBI-OHEMIm/TFSI (37.5-60%)	AH	100-250	50 (250°C)*	383	*	[86]	
PBI-BMIm/Cl (5%)	9**	20-200	0.1 (160°C)	300	Электропрово- дящая мембрана	[92]	
PBI–BMIm/BF ₄ (5%)	7**	20-200	$2 \times 10^{-3} (200^{\circ} \text{C})$	300	То же	[92]	
PBI-BMIm/TFSI (5%)	9**	20-200	0.65 (160°C)	300	*	[92]	
PBI-BMIm/NCS (5%)	8**	20-200	$3 \times 10^{-4} (200^{\circ} \text{C})$	300	*	[92]	
PBI–HMIm/TfO (2, 3, 4) ^a	AH	80-250	16 (250°C)	348	Топливная ячейка	[93]	
PBI-MIm/TFSI (N)	AH	130-190	1.86 (190°C)	300	То же	[94]	
(PBI/ETS)-MIm/TFSI (73%)	AH	20-200	0.15 (180°C)		*	[95]	
(PBI+SPEEK)–TESPA/HSO ₄ (2.5, 5%)	60-100	25, 80	101 (80°C)	290	*	[96]	
(PBI+SPEEK)-BIm/HSO ₄ (2.5, 5%)	60-100	25, 80	94 (80°C)	355	*	[96]	
(PBI-O-Ph)-EIm/TfO (40, 50, 70%)	Ν	25-160	5 (160°C)*		*	[97]	
(PBI-O-Ph)-BMIm/TfO (40, 50, 70%)	Ν	25-160	2.35 (140°C)*		*	[97]	
П	олимер	+ ионная :	- жидкость + кисло	ота		I	
[PBI–DEMA/TFSI (1, 2)] ^a –H ₃ PO ₄ (1–9) ^a	5	80-180	60 (180°C)	200	Топливная ячейка	[88]	
$[PBI-MDA (0-2\%)]-Pr(MIm)_2Br_2$ (4.5%)-H ₃ PO ₄ (11-15%)	AH	25-180	224 (180°C)	180	То же	[98]	
[pPBI-MsMIm/Cl (5-20%)]-H ₃ PO ₄ (N)	AH	110-170	103 (170°C)	250	*	[99]	
[PBI–BMIm/Cl (5%)]–H ₃ PO ₄ (60%)	AH	0-200	26 (200°C)	180-210	*	[100]	
[PBI–BMIm/Br (5%)]–H ₃ PO ₄ (60%)	AH	0-200	58 (200°C)	180-210	*	[100]	
[PBI–BMIm/I (5%)]–H ₃ PO ₄ (60%)	AH	0-200	68 (200°C)	180-210	*	[100]	
$[PBI-BMIm/BF_4 (5\%)]-H_3PO_4 (60\%)$	AH	0-200	94 (200°C)	180-210	*	[100]	
$[PBI-BMIm/PF_{6}(5\%)]-H_{3}PO_{4}(60\%)$	AH	0-200	23 (200°C)	180-210	*	[100]	
$[PBI-BMIm/NCS (5\%)]-H_3PO_4 (60\%)$	AH	0-200	26 (200°C)	180-210	*	[100]	
[PBI–BMIm/TFSI (5%)]–H ₂ PO ₄ (60%)	AH	0-200	65 (200°C)	180-210	«	[100]	
[PBI/IPTS-BMIm/H ₂ PO ₄ (3-10%)]-	AH	100-170	133 (160°C)	160-250	«	[101]	
$H_3PO_4 (8-10)^a$		_	· · · · /				
PBI–ApMIm/Br-GO (5)–H ₃ PO ₄ (2, 3.5) ^a	AH	100-180	35 (175°C)	Ν	×	[102]	

Таблица 1. Состав мембран на основе PBI, относительная влажность RH, удельная электропроводность к и температура декомпозиции T_{dec}

Таблица 1. Продолжение

Мембрана	<i>RH</i> , %	<i>T</i> , °C	к, мСм/см	$T_{dec}, ^{\circ}\mathrm{C}$	Применение	Литература
PBI-[NH ₄ BEA+MtOHTMA/(CH ₃) ₂ PO ₄	100,	RT-200	65 (100°C)	20-200	*	[103]
(29%)](3, 10, 20%)-H ₃ PO ₄ (3.1, 3.4, 5.9) ^a	0.05**		5 (100°C)			
PBI-[NH4BEA+DMEtOHA/TFSI	100,	RT-200	61 (100°C)	20-200	*	[103]
(5%)](3, 10, 20%)–H ₃ PO ₄ (1.6, 3.4, 5.9) ^a	0.05**		0.15 (100°C)			
PBI-[NaY+DMEtOHA/TFSI (17%)]	100,	RT-200	34 (100°C)	20-200	*	[103]
(3, 10, 20%)–H ₃ PO ₄ (8.5, 8.9, 12.1) ^a	0.05**		6(100°C)			
PBI-[NaY+MIm/TFSI (19%)] (3, 10,	0.05**	RT-200	32 (150°C)	20-200	*	[103]
20%)-H ₃ PO ₄ (4.6, 8.7, 12.0) ^a						
(PBI/ETS)-MIm/TFSI (35%)-H ₃ PO ₄	AH	20-200	10 (170°C)	20-200	*	[95]
(40%)						

Примечание. RT – комнатная температура, АН – безводные условия, FH – полностью увлажненные условия.

^а Число молей ионная жидкость-кислота на 1 моль повторяющихся звеньев PBI.

N – не указано.

* Значение взято из графика.

**Поглощение, %.

ной жидкости в мембране составляло 5 мас. %. Проведен анализ влияния аниона (Cl, Br, I, NCS, TFSI, PF₆, BF₄) на структуру, морфологию, термическую, окислительную и механическую стабильность, протонную проводимость мембран. Все мембраны (РВІ-ионная жидкость)-H₃PO₄ демонстрировали увеличение термической, окислительной и механической стабильности по сравнению с мембраной PBI-H₃PO₄. При этом электропроводность мембран, содержащих 5 мас. % BMIm/Cl и BMIm/I, была ниже электропроводности мембраны PBI-H₃PO₄, а электропроводность мембран, содержащих другие изученные соли, была выше электропроводности мембраны, допированной только фосфорной кислотой.

Сравнение мембран (РВІ-ионная жидкость)-H₃PO₄, содержащих дикатионные (бис-(трифторметилсульфонил)имид 1,3-ди(3-метилимидазолий) пропан, бис-(гексафторфосфат) 1,6-ди(3метилимидазолий) гексан) и монокатионные (бис-(трифторметилсульфонил)имид 1-гексил-3метилимидазолия, гесафторфосфат 1-бутил-3метилимидазолия) ионные жидкости, проведено в работах [116, 117]. Все мембраны, содержащие как дикатионные, так и монокатионные ионные жидкости, являются термически более стабильными и имеют электропроводность выше, чем у мембраны PBI-H₃PO₄, при этом электропроводность мембран с дикатионными ионными жидкостями выше, чем с монокатионными ионными жидкостями. Проведенное тестирование мембран, содержащих ионную жидкость, в мембранном электродном ансамбле показало, что они превосходят по производительности мембраны PBI-H₃PO₄. Это главным образом связано с более высокой

электропроводностью мембран (PBI-ионная жидкость)— H_3PO_4 , а также пластифицирующим эффектом ионных жидкостей, в результате которого улучшается контакт мембраны с катодом и анодом.

В ряде работ для улучшения свойств протонпроводящих мембран использовали модифицирванный полибензимидазол или неорганический наполнитель, функцианализированный ионной жидкостью. В работе [101] для предотвращения утечки дигидрофосфата 1-бутил-3-метилимидазолия (BMIm/H₂PO₄) и H₃PO₄ из композитной мембраны (PBI-ионная жидкость)-H₃PO₄ и улучшения ее механических свойств была проведена модификация полибензимидазода. Для этого сначала был получен полибензимидазол, содержащий гидроксильные группы, который в дальнейшем взаимодействовал с изоцианатом 3-(триэтоксисилил) пропила (IPTS). Мембраны, полученные из такого модифицированного РВІ (сРВІ на рис. 2), имели клеточную поперечносшитую (cage-like cross-linked) структуру, образованную в результате реакции гидролиза за счет Si-O-Si сшивания. При одних и тех же условиях электропроводность мембран, содержащих BMIm/H₂PO₄ (5, 8, 10 мас. %), была выше электропроводности мембран PBI-H₃PO₄. В мембранах (РВІ-ионная жидкость)-Н₃РО₄ возможны два пути переноса протона: первый – это прыжки протонов между молекулами Н₃РО₄ и имидазольными кольцами PBI (синий путь на рис. 2), второй — перенос протонов между молекулами H₃PO₄, BMIm/H₂PO₄ и имидазольными кольцами PBI (розовый путь на рис. 2). Захваченная в клетку ионная жидкость не только способствовала по-

Рис. 2. Возможные пути переноса протона в мембранах. Взято из работы [101].

глощению H₃PO₄, но и служила акцептором протонов, сокращая расстояние передачи протонов и тем самым ускоряя протонную проводимость.

В работе [95] при изготовлении мембраны также использовался модифицированный полибензимидазол. Сначала готовили пористую PBIмембрану, затем путем связывания гидроксильных групп титаносиликатного микропористого материала ETS-10 и аминогрупп полибензимидазол "пришивали" ETS-10 к полибензимидазолу. При проведении этой реакции использовали фунционализированный ETS-10, который был получен взаимодействием с 3-(2,3-эпоксипропокси) пропилтриметоксисиланом. Большое внимание в работе уделено влиянию последовательности стадий функционализации полибензимидазола, а также допирования фосфорной кислоты и ионной жидкости (MIm/TFSI) в полученную мембрану на ее электропроводящие свойства. Гидрофильный характер MIm/TFSI обеспечивает абсорбцию воды из газовой фазы, задерживает олигомеризацию фосфорной кислоты и изменяет профиль проводимости при температурах выше 160°С. ETS-10, ковалентно связанный с полибензимидазолом, предотвращает вытекание протонного проводника из мембраны и в то же время предотвращает перетекание топлива Н₂ и метанола.

В работе [103] ионная жидкость (диметилфосфат 2-гидрометил триметиламмония, бис-(трифторметилсульфонил)имид N,N-диметил-N-(2гидроксиэтил) аммония и 1-Н-3-метилимидазолия) были инкорпорированны в цеолиты (NH₄BEA и NaY) и изучено их влияние на степень допирования PBI-мембран фосфорной кислотой, морфологические, физико-химические и ИХ электрохимические свойства. Среди испытанных мембран лучшими электролитами являются мембраны, содержащие MIm/TFSI-NaY. Проводимость и селективность транспорта H⁺/H₂ мембран PBI-[NaY-MIm/TFSI]-H₃PO₄ превосходят аналогичные характеристики мембран PBI-H₃PO₄ и PBI-NaY-H₃PO₄. Полученный результат авторы связывают с присутствием на поверхности NaY катионов МІт и анионов TFSI, которые способны к кислотно-основным взаимодействиям с компонентами системы PBI-H₃PO₄ и участвуют в процессе переноса протона по механизму Гротгуса. Полученная мембрана также показала хорошую работоспособность при тестировании в мембранном электродном ансамбле.

В работе [102] была получена композитная мембрана, в которой в качестве наполнителя использовался функцианализированный ионной жидкостью оксид графена (ILGO). Мембрана (PBI–ILGO)–H₃PO₄ имеет высокие значения электропроводности при низком содержании

фосфорной кислоты, что предотвращает ее утечку и способствует использованию мембраны в топливных элементах. Топливный элемент с мембраной (PBI–ILGO)– H_3PO_4 имеет максимальную удельную мощность 320 мВт/см² при 175°С, что выше, чем удельная мощность топливного элемента с мембраной PBI– H_3PO_4 .

В работе [99] была разработана мембрана (PBI-ионная жидкость)-H₃PO₄ для гибкого суперконденсатора, в которой использовался пористый полибензимидазол и хлорид (1-(3триметоксисилилпропил)-3-метилимидазолия (MsMIm/Cl). Ионная жидкость в полимерной матрице (PBI-ионная жидкость) подвергалась гидролизу с образованием связей Si-O-Si. Электропроводность композитной мембраны достигает 103 мСм/см при 170°С, и она обладает хорошими механическими свойствами и термической стабильностью. Высокое значение электропроводности обусловлено пористой структурой полимерной матрицы, что позволяет поглощать больше H₃PO₄. Ионная жидкость также выступает как переносчик протонов, что приводит к эффективному увеличению протонной проводимости. Приготовленный суперконденсатор с такой мембраной сохраняет стабильные электрохимические характеристики в условиях изгиба, и его удельная емкость достигает 85.5 Φ/Γ при 120°С, что в 3 раза выше, чем при комнатной температуре.

Подводя итог сказанному выше, можно отметить, что введение ионной жидкости в полимерную мембрану PBI-кислота позволяет не только улучшить механические свойства мембран, но и повышает термическую стабильность и электропроводность, значение которой достигает 10⁻¹ См/см.

Полимерный электролит (РВІ-ионная жидкость)

Перспективы использования протонных ионных жидкостей в качестве донора протонов в протонпроводящих мембранах обсуждается в ряде работ [62, 69, 71, 85, 86, 91].

Наиболее изученной протонной ионной жидкостью, используемой для приготовления мембран на основе PBI, является коммерчески доступный трифлат диэтилметиламмония (DEMA/TfO). В работе [85] были получены мембраны PBI–DEMA/TfO, содержащие от 1 до 4 моль DEMA/TfO на повторяющееся звено PBI. На основании данных ИКи ЯМР-спектроскопии обнаружено слабое взаимодействие катионов и анионов DEMA/TfO с имидазольными фрагментами PBI. В публикации также достаточно подробно обсуждается термическая стабильность мембран. Потерю массы на кривых TГА при 250°C авторы связывают с потерей избытка (свободного) DEMA/TfO и диэтилметиламина за счет протонирования PBI с образованием (PBI-H₂⁺)_x · (CF₃SO₃⁻)_{2x}, при 380°C с потерей TfOH за счет разложения (PBI-H₂⁺)_x · (CF₃SO₃⁻)_{2x} и, наконец, при 500°C с полным разложением PBI с образованием CO₂, N₂, углеводородов и остатков, богатых углеродом. В работе изучено влияние остаточной воды, которая может накапливаться в процессе работы топливной ячейки. Было показано, что при увеличении относительной влажности с 10 до 40% электропроводность мембраны PBI–DEMA/TfO увеличивается на порядок.

С использованием модельной системы, состоящей из смеси DEMA/TfO и мономера бензимидазола (BIm вместо полимера PBI), изучен механизм переноса протонов методами ЯМР ¹Н и ЯМР с импульсным градиентом поля. При отсутствии воды наблюдается быстрый процесс протонного обмена между NH⁺_{DEMA} и NH_{BIm}. В присутствии воды в модельной системе проводимость осуществляется по кооперативному механизму, в котором участвуют все виды частиц NH_{DEMA}^+ , NH_{BIm} , H_2O , что приводит к повышению скорости совместного переноса протона. На основании полученных данных предложена модель процессов переноса протонов в мембране PBI-DEMA/TfO (рис. 3).

Мембраны для H₂/Cl₂ топливных ячеек на основе PBI, допированные DEMA/TfO, были изучены также в работе [87]. Содержание ионной жидкости в мембране изменялось от 33 до 83%. На основании ИК-спектров сделан вывод, что при увеличении концентрации DEMA/TfO происходит взаимодействие между C=N PBI и N-H аммонийного катиона, в результате чего протонируется имидная группа имидазола. На термограммах ДСК мембран, содержащих менее 67% DEMA/TfO, эндотермических пиков, связанных с плавлением свободной DEMA/TfO, не наблюдается. Однако дальнейшее повышение содержания DEMA/TfO показывает, что небольшое количество свободной ионной жидкости присутствует в структуре PBI-мембраны. Мембраны с высоким содержанием DEMA/TfO имеют электропроводность, которая достигает >10⁻³ См см⁻¹ при 40°С. Такие высокие значения электропроводности авторы связывают как с увеличением ионной подвижности, так и с образованием хорошо развитых ионных каналов. Низкие значения энергии активации электропроводности ($\Delta G_{\varkappa}^{\neq}$) 14-27 кДж/моль указывают на то, что в этих мембранах доминирует гротгусовский механизм протонного переноса. В то же время при высо-

кой концентрации ионной жидкости в мембране, когда существует свободная DEMA/TfO, перенос протона может осуществляться также и

Рис. 3. Транспорт протона в мембране PBI–DEMA/TfO. Взято из работы [85].

Рис. 4. Гипотеза ионной электропроводности в мембране PBI-DEMA/TfO. Взято из [87].

по транспортному механизму. На рис. 4 приведена предложенная гипотеза ионной электропроводности. H_2/Cl_2 топливная ячейка с мембраной PBI–DEMA/TfO, содержащей 83% DEMA/TfO, дает удельную мощность 26.50 и 29.64 мBт/см² при 120 и 140°С. В работе [86] были изучены мембраны, полученные на основе PBI и нескольких ионных жидкостей: трифторметансульфоната диэтилметиламмония (DEMA/TfO), трифторметансульфоната 1-этил-3-метилимидазолия (EMIm/TfO), *бис*-(трифторметансульфонил)имида 1-метилимида-

Рис. 5. Температурная зависимость удельной электропроводности безводных мембран PBI–ионная жидкость с различным содержанием ионной жидкости: а – DEMA/TfO, 6 – EMIm/TfO, в – OHEMIm/TFSI, г – MIm/TFSI. Массовое соотношение PBI : ионная жидкость = 1.0 : 0.6, 1.0 : 0.9, 1.0 : 1.2, 1.0 : 1.5. Взято из работы [86].

золия (MIm/TFSI), *бис*-(трифторметансульфонил)имида 1-(2-гидроксиэтил)-3-метилимидазолия (OHEMIm/TFSI). Качественный анализ химической структуры мембран на основе ИКспектров показал, что DEMA/TfO, MIm/TFSI и OHEMIm/TFSI образуют водородную связь с полимером, в то время как EMIm/TfO физически адсорбируется на PBI и не образует H-связей. Зависимость электропроводности изученных в работе [86] мембран различного состава при 100– 250°C приведена на рис. 5.

Рассчитанные значения энергии активации электропроводности лежат в пределах от 16.0 до 26.8 кДж/моль, на основании чего авторы сделали заключение, что перенос протона осуществляется по механизму Гротгуса, при котором $\Delta G_{\varkappa}^{\neq}$ находится в пределах 14–40 кДж/моль.

Мембраны на основе PBI, допированного методом набухания сильнокислотной протонной ионной жидкостью трифторметансульфонатом 2-сульфоэтилметиламмония (SEMA/TfO), изучены в работе [90]. В результате взаимодействия кислотного катиона ионной жидкости с основными группами полимера происходит их протонирование с образованием нейтральной молекулы N-метилтаурина. Кроме того, наблюдается быстрый протонный обмен между кислотным катионом SEMA и молекулами воды. В результате протонная проводимость осуществляется как по транспортному механизму катионом протонной ионной жидкости и Н₃O⁺, так и по кооперативному механизму с участием обоих видов ионов. При этом электропроводность полученных мембран довольно слабая, что объясняется низким уровнем допирования полимера. Степень поглощения полимерной ионной жидкости полибензимидазолом методом набухания зависит от кислотности катиона: чем ниже кислотность катиона, тем меньше степень набухания. Несмотря на некоторые особенности таких мембран авторы считают, что протонные ионные жидкости с высокой кислотностью по Бренстеду являются

многообещающими кандидатами для использования в качестве неводных электролитов.

В работе [92] обсуждается влияние природы аниона (Cl, NCS, TFSI, BF₄) в ионной жидкости с катионом BMIm на электропроводность полимерной мембраны PBI–ионная жидкость. Величины энергии активации электропроводности в зависимости от аниона лежат в такой последовательности

 $\Delta G_{\kappa}^{*}(\text{TFSI}) \leq \Delta G_{\kappa}^{*}(\text{Cl}) \leq \Delta G_{\kappa}^{*}(\text{BF}_{4}) \leq \Delta G_{\kappa}^{*}(\text{NCS}).$ Они находятся в диапазоне 65–84 кДж/моль, что позволяет сделать предположение о транспортном механизме ионного переноса.

Протонпроводящие мембраны PBI–BIm/TfO с различным мольным соотношением ИЖ и единичных звеньев полимера (1.35/1, 2.2/1, 3.2/1) были получены в [91]. Изучено их фазовое поведение, термическая и электрохимическая стабильность, измерена удельная электропроводность в широком температурном интервале. Проведенное ДСК-исследование в диапазоне –80...+150°С показало, что никаких фазовых переходов, которые характерны для чистой BIm/TfO, в мембране не наблюдается. Электропроводность мембран растет с увеличением содержания в них ионной жидкости, но остается ниже электропроводности чистого трифторметансульфоната N-бутилимидазолия.

Подводя итог сказанному выше, можно отметить следующее. Поскольку значения удельной электропроводности полимерных протонпроводящих мембран выше 10^{-2} См/см считается достаточной для использования в топливном элементе [118], анализ величин электропроводности мембран PBI—ионная жидкость (табл. 1) показывает, что такие мембраны могут составить серьезную конкуренцию мембранам Нафион. Использование протонной ионной жидкости в PBI-мембране как протонного проводника позволяет существенно расширить температурный интервал работы топливного элемента в высокотемпературную область по сравнению с мембранами PBI—кислота.

Полимерные электролиты на основе поли(винилиденфторид-со-гексафторпропилена)

Сополимер поли(винилиденфторид-*со*-гексафторпропилен)

является распространенным фторированным сополимером, который широко применяется в качестве полимерной матрицы благодаря своей высокой термической и химической стойкости, гидрофобности, способности хорошо удерживать жидкие электролиты в мембранах на его основе.

PVdF-HFP имеет полукристаллическую структуру, т.е. представляет смесь аморфных и кристаллических областей. Кристаллические звенья винилиденфторида обеспечивают структурную целостность, поддерживающую образование самостоятельной пленки, а звенья аморфного гексафторпропилена помогают улавливать большое количество ионных частиц. Группа (-С-F), присутствующая в PVdF-HFP, действует как электроноакцепторная группа, обеспечивающая анодную стабильность. Сополимер PVdF-HFP также показывает высокую растворимость в органических растворителях, что имеет большое значение при изготовлении мембран методом отливки из раствора. В табл. 2 приведены литературные данные по составу и некоторым свойствам полимерных электролитов на основе PVdF-HFP и ионной жилкости.

Среди электрохимических устройств полимерный электролит (PVdF–HFP)–ионная жидкость наиболее широко применяется в конденсаторах, а также при изготовлении полимерных электролитных мембран для батареек/аккумуляторов, где ионная жидкость часто используется в качестве растворителя для солей лития/натрия.

В многочисленных работах [2, 119, 123, 129, 135, 139, 141, 142, 144, 145, 151, 170, 175] было показано, что в результате взаимодействия ионной жидкости с полярными – CF₃-группами PVdF– HFP происходят значительные конформационные изменения в полимере, приводящие к снижению степени его кристалличности и, как следствие, к росту электропроводности. Так, в работе [2] была выявлена корреляция между изменением проводимости и степенью кристалличности PVdF–HFP в зависимости от концентрации бромида 1-бутил-3-метилимидазолия (BMIm/Br) (рис. 6).

Полимерный электролит (PVdF—HFP)—ионная жидкость

Поскольку основной областью применения полимерного электролита (PVdF–HFP)–ионная жидкость являются суперконденсаторы, в таких электролитах чаще всего используется апротонная ионная жидкость.

Во многих работах было показано, что с увеличением концентрации ионной жидкости электропроводность полимерного электролита (PVdF–HFP)–ионная жидкость растет, достигая определенного предела, а при дальнейшем повышении концентрации ионной жидкости может уменьшаться. В работе [134] было показано, что с увеличением содержания BMIm/I проводимость полимерного электролита (PVdF–HFP)–ионная

ПОЛИМЕРНЫЕ ЭЛЕКТРОЛИТЫ

Таблица 2. Состав мембран на основе PVdF–HFP, относительная влажность RH, удельная электропроводность к и температура декомпозиции T_{dec}

Мембрана	RH, %	<i>T</i> , °C	к, мСм/см	T_{dec} , °C	Применение	Лите- ратура
П	олимер +	ионная х	кидкость (мас.	%)		
(PVdF-HFP)–EMIm/BF ₄ (75%)	N	-60-40	16.8 (30°C)		Электрохимический двуслойный конденса- тор	[119]
[(PVdF-HFP)–EMIm/BF ₄ (75%)] + ZnO (5%)	Ν	-60-40	2.57 (30°C)		То же	[119]
[(PVdF-HFP)–EMIm/BF ₄ (75%)] + TiO ₂ (5%)	Ν	-60-40	3.75 (30°C)		«	[119]
(PVdF-HFP)–EMIm/BF ₄ (75%)	Ν	25-65	8.6 (RT)		Суперконденсатор	[120]
(PVdF-HFP)–EMIm/BF ₄ (90%)	Ν	RT	25		Микросуперконденса- тор	[121]
(PVdF-HFP)-BMIm/BF ₄ (80%)	AH	-30-80	1.79 (20°C)	250-350	Суперконденсатор	[122]
(PVdF-HFP)-BMIm/BF ₄ (25-75%)- SN (25-75%)	AH	-30-80	6.4 (20°C)	250-350	«	[122]
(PVdF-HFP)–EMIm/TFSI (85%)	AH	RT	3.3	350	*	[123]
(PVdF-HFP)-EMIm/TFSI (96%)	>50 ppm	25-100	8.6 (25°C)		*	[124]
(PVdF-HFP)-EMIm/TFSI (75%)	Ν	25	0.95	333	*	[125]
(PVdF-HFP)–EMIm/TFSI (75%)– LASGP (9%)	Ν	25	5.22	346	«	[125]
(PVdF-HFP)–EMIm/TFSI (83%)	AH	RT	11	300	*	[126]
[(PVdF-HFP)–EMIm/TFSI (83%)]– GO (1%)	AH	RT	25	300	«	[126]
[(PVdF-HFP)/TAIC (5%)]– EMIm/TFSI (75%)	Ν	RT	1.4	420	Электрохимическое устройство	[127]
(PVdF-HFP)/P(MMA-co-BMA)– EMIm/TFSI (70%)	Ν	-40-80	1.02 (RT)	300	То же	[3]
[(PVdF-HFP)–GNSs (0.03–0.3%)]– EMIm/TFSI (80%)	Ν	RT	6.7	400	Суперконденсатор	[128]
(PVdF-HFP)–EMIm/TCM (9–82%)	Ν	RT	37.6	261	Электрохимическое устройство	[129]
(PVdF-HFP)–EMIm/TfO (80%)	Ν	20-100	5.2 (RT)		Натрий-серная бата- рея	[130]
(PVdF-HFP)-EIm/TfO (60%)	0-22	20-160	85 (90°C, RH)* 5 (140°C, AH)*		Топливная ячейка	[131]
(PVdF-HFP)–EMIm/TCB (80%)	AH	20-90	9 (RT)	310	Суперконденсатор	[132]
(PVdF-HFP)-BMIm/TfO (40, 50, 70%)	Ν	25-160	19 (160°C)		Топливная ячейка	[90]
(PVdF-HFP)-BMIm/TfO (60%)	0-22	20-160	18 (140°C, RH)* 17 (160°C, AH)*		То же	[131]
(PVdF-HFP)-BMIm/TFSI (20-80%)	AH	30-160	0.66 (RT)	300-350	Перезаряжаемая батарея	[133]
(PVdF-HFP)–BMIm/I (2–5) ^a	Ν	RT	4		Суперконденсатор	[134]
(PVdF-HFP)-BMIm/Br (10-50%)	Ν	25–90	6.3 (RT)	235-325	Электрохимическое устройство	[2]
(PVdF-HFP)-BMIm/NCS (40%)	Ν	25-100	0.15 (RT)		Литий-ионная батарея	[135]

Таблица 2. Продолжение

Мембрана	RH, %	<i>T</i> , °C	к, мСм/см	T_{dec} , °C	Применение	Лите- ратура
(PVdF-HFP)-BMIm/Cl (50-80%)	Ν	30-90	4.1 (30°C) 15 (90°C)		Электрохимический двуслойный конденса- тор	[136]
[(PVDF-HFP)+PVP]–BMIm/HSO ₄ (50–70%)	60	30-130	3.9 (30°C)		Топливная ячейка	[137]
(PVdF-HFP)-BMIm/Cl (60%)-(1M TetEA/BF4 B EC/PC(1:1)) (20%)	Ν	30-100	8.9 (30°C)		Электрохимический двуслойный конденса- тор	[138]
(PVdF-HFP)–BMIm/BF ₄ (10–90%)	Ν	30-90	5.9 (30°C)	300-400	Электрохимическое устройство	[139]
$[(PVdF-HFP)-BMIm/I (4)^{a}] + CNTs (1 \times 10^{-3}-4 \times 10^{-3})^{a}$	Ν	RT	17.6		Суперконденсатор	[134]
(PVdF-HFP)-EIm/TfO (40, 50, 70%)	Ν	25-160	9.5 (100°C)		Топливная ячейка	[97]
(PVdF-HFP)-EMIm/Br (10-80%)	Ν	RT	4.82		Суперконденсатор	[140]
(PVdF-HFP)–AEIm/TFSI (33.3– 85.7%)	Ν	RT	0.052		Электрохимический двухслойный конден- сатор	[141]
(PVdF-HFP)—AMIm/TFSI (33.3— 85.7%)	Ν	RT	0.029		Электрохимический двуслойный конденса- тор	[141]
(PVdF-HFP)–AMEtIm/TFSI (33.3– 85.7%)	Ν	RT	0.039		То же	[141]
(PVdF-HFP)–DMEA/TFA (0.005) ^b	AH	50, 100	2.1 (50°C)	190	Электрохимическое устройство	[142]
(PVdF-HFP)-DEA/TFA (0.005) ^b	AH	50, 100	2.97 (50°C)	212	То же	[142]
(PVdF-HFP)-TEA/TFA (0.005) ^b	AH	50, 100	1.76 (50°C)	186	*	[142]
(PVdF-HFP)-TEOA/TFA (0.005) ^b	AH	50, 100	1.02 (50°C)	203	*	[142]
(PVdF-HFP)-DIPEA/TFA (0.005) ^b	AH	50, 100	1.68 (100°C)	194	*	[142]
(PVdF-HFP)-TBA/TFA (0.005) ^b	AH	50, 100	0.36 (50°C)		*	[142]
(PVdF-HFP)–AMEtA/TFSI (33.3– 85.7%)	Ν	RT	0.13		Электрохимический двуслойный конденса- тор	[141]
(PVdF-HFP)–MMEtA/TFSI (33.3– 85.7%)	Ν	RT	0.145		То же	[141]
((PVdF-HFP)+Nafion) (32%)+SWCNT (20%)–DEMMsA/BF ₄ (48%)	Ν	RT	0.17		Устройства преобразо- вания энергии	[1, 143]
((PVdF-HFP)+Nafion)(32%)+SWCNT (20%)–DEMMsA/CF ₃ BF ₃ (48%)	Ν	RT	0.16		То же	[1, 143]
((PVdF-HFP)+Nafion)(32%)+SWCNT (20%)–DEMMsA/C ₂ F ₅ BF ₃ (48%)	Ν	RT	0.07		×	[1, 143]
((PVdF-HFP)+Nafion) (32%)+SWCNT (20%)–DEMMsA/TFSI (48%)	Ν	RT	0.11		«	[1, 143]
По	лимер +	ионная ж	идкость + кисл	юта	l	
(PVdF-HFP)–DEMA/TfO (0–80%)– H ₃ PO ₄ (40%)	AH	RT	0.63	100-200	Топливная ячейка	[144]

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А том 65 № 4 2023

ПОЛИМЕРНЫЕ ЭЛЕКТРОЛИТЫ

Таблица 2. Продолжение

Мембрана	RH, %	T, °C	к, мСм/см	$T_{dec}, ^{\circ}\mathrm{C}$	Применение	Лите- ратура
$(PVdF-HFP)-DEMA/TfO(10-80\%)-HClO_4 \cdot SiO_2(N)$	AH	RT, 100	0.6 (100°C)		Топливная ячейка суперконденсатор	[145]
Пол	имер + ис	і онная жид	кость + Li(Na)) соль	I	1
[(PVdF-HFP)–EMIm/TfO (80%)]– (0.5M Na/TfO B EMIm/TfO)	Ν	20-100	5.7 (RT)		Натрий-серная батарея	[130]
((PVdF-HFP)+TiO ₂)–(0.5M Na/TfO в BMIm/TfO)	AH	35-80	0.4 (RT)		«	[146]
(PVdF-HFP)–(0.5M Na/TfO в BMIm/TfO)	Ν	25-50	0.21 (30°C)	400	Натрий-ионная батарея	[147]
(PVdF-HFP)–(0.5M Na/TfO в EMIm/TfO)	Ν	25-50	0.25 (30°C)	400	«	[147]
(PVdF-HFP)–(1M Na/TFSI в BMIm/TFSI) (20–70%)	Ν	30-100	1.9 (30°C)	368–394	×	[148]
(PVdF-HFP)–[1M Na/TFSI B (EC- DEC/TEGDME/EMIm/BF ₄)] (75%)	Ν	30-70	4.7 (70°C)		«	[149]
(PVdF-HFP)-Na/NCS (30%)- EMIm/TCM (0-10%)	N	RT	0.78		Электрохимический двуслойный конденса- тор	[150]
[(PVdF-HFP)+rGO-PEG-NH ₂ (0– 5%)]–EMIm/TFSI (30–50%)–Li/TFSI (20%)	AH	30-100	2.1 (30°C)	315-342	Литий-ионная батарея	[151]
(PVdF-HFP)-EMIm/TFSI(0-50%)- (1M Li/TFSI B DME/DOL(1:1))(40- 60%)	Ν	25-75	0.88 (RT)	400	Перезаряжаемая литий-металлическая батарея	[152]
(PVdF-HFP)–EMIm/TFSI (33%)– Li/TFSI (23.5%)–SiO ₂ (20%)	Ν	25-100	0.74 (25°C)	300	Литий-ионная батарея	[153]
[(PVdF-HFP)–Li/TFSI (20%)]– EMIm/TFSI (80%)	AH	30-50	0.64 (30°C)	200	То же	[154]
[(PVdF-HFP)–Li/TFSI (20%)]– BMIm/BF ₄ (0–60%)	0.5 ppm	RT	1.7	300-400	Перезаряжаемая литий-ионная батарея	[155]
[(PVdF-HFP)–Li/TFSI (20%)]– BMIm/BF ₄ (0–70%)	0.5 ppm	RT	3.2	300-400	Литий-металлическая батарея	[156]
(PVdF-HFP)—(0.5M Li/TFSA в EMIm/TFSA) (90%)	0.5 ppm	10-50	1.7 (20°C)		Литий-ионная батарея	[157]
(PVdF-HFP)–EMIm/TFSI (20–60%)– Li/TFSI (20%)	AH	25	4.3		То же	[158]
[(PVdF-HFP)–Li/TFSI(20%)]– BMIm/TFSI(0–70%)	AH	30-160	2.07 (30°C)	300-350	*	[133]
(PVdF-HFP)-Li/TFSI (25.33%)- EMIm/TFSI (33-50%)	Ν	20-80	4.6 (30°C)		×	[159]
(PVdF-HFP)–BMIm/TFSI (60%)– Li/TFSI (20%)	AH	30-90	1.8 (30°C)		«	[160]
[(PVdF-HFP)+SiO ₂ (2%)]– BMIm/TFSI(60%)–Li/TFSI(20%)	AH	30-90	5.23 (30°C)		«	[160]
[(PVdF-HFP)+SiO ₂ (2.8%)]– EMIm/TFSI(55.6%)–Li/TFSI(13.9%)	AH	20-60	1.53 (20°C)		Суперконденсатор	[161]

Таблица 2. Продолжение

Мембрана	RH, %	<i>T</i> , °C	к, мСм/см	T_{dec} , °C	Применение	Лите- ратура
[(PVdF-HFP)+Poly(VPIM/TFSI)]– EMIm/TFSI–Li/TFSI	Ν	25-85	0.92 (RT)	352	Литий-ионная батарея	[162]
[(PVdF-HFP) + SiO ₂ + Poly(VPIM/TFSI)]–EMIm/TFSI– Li/TFSI	Ν	25-85	1.69 (RT)	368	То же	[162]
[(PVdF-HFP)+Poly(VPIM/TFSI)]– BMIm/TFSI–Li/TFSI	Ν	25-85	0.7 (RT)	362	«	[163]
[(PVdF-HFP)+TiO ₂]–(0.1–0.5M Li/TFSI b C ₃ CNMIm/TFSI)	AH	20-70	0.3 (20°C)	200	«	[164]
[(PVdF-HFP)+Al ₂ O ₂ (1.5–1.8%)]– BMIm/BF ₄ (11–27%)–Li/TFSI (12– 14.5%)–(PC+EC)(1:1) (30–36%)	Ν	25-75	5.26 (25°C)	150	«	[165]
(PVdF-HFP)-PDEIm/TFSI (60%)- (1M Li/TFSI B EC/DMC(1:1))	Ν	25-80	1.78 (25°C)	350	×	[166]
[(PVdF-HFP)+SiO ₂ (30%)]–[1M Li/TFSI B [EMIm/TFSI (25– 100%)+EC/DEC]	0.1	25-100	4.0 (RT)*	145—198	Литий-металлическая батарея	[167]
[(PVdF-HFP)–EMIm/TFSI (75%)]– [1M Li/PF ₆ B EC:DEC(1:1)]	Ν	25	14.8		Суперконденсатор	[125]
[(PVdF-HFP)–LASGP (9%)– EMIm/TFSI (75%)]–[1M Li/PF ₆ в EC:DEC(1:1)]	Ν	25	78		×.	[125]
[(PVdF-HFP)–Li/BF ₄ (15%)]– BMIm/BF ₄ (5–20%)	Ν	30-90	0.02 (RT)		Литий-ионная батарея	[168]
(PVdF-HFP)–(0.3M Li/BF ₄ в BMIm/BF ₄) (20–80%)	AH	30-160	5 (30°C)*	300-380	Электрохимическое устройство	[169]
[(PVdF-HFP)+SiO ₂]–(0.3M Li/TfO в EMIm/TfO)(50–65%)	AH	-30-80	3 (30°C)	320-330	Литий-ионная батарея	[170]
(PVdF-HFP)–(0.3M Li/TfO в EMIm/TfO) (80%)	Ν	25-85	4.5 (RT)		Суперконденсатор	[171]
(PVdF-HFP)–(0.3M Li/TfO в EMIm/TfO) (65%)–EC/PC(1:1) (15%)	Ν	25-85	8 (RT)		*	[171]
(PVdF-HFP)—(1M Li/NfO в EMIm/NfO) (60-80%)	AH	-50-100	3.09 (30°C)	330	Литий-ионная батарея	[172]
(PVdF-HFP)—(1M Li/NfO в BMIm/NfO) (60—80%)	AH	-50-100	26.1 (100°C)	336	Перезаряжаемая литий-ионная батарея	[173]
(PVdF-HFP)–EMIm/DCA (60%)– LiClO ₄ (10%)	Ν	RT	0.6	300	Литий-ионная батарея	[174]

Примечание. RT – комнатная температура, AH – безводные условия, FH – полностью увлажненные условия. ^а Число молей ионная жидкость-кислота на 1 моль повторяющихся звеньев PBI.

^b Число молей ионной жидкости на 1 грамм полимера/сополимера.

N – не указано. *Значение взято из графика.

**Поглощение, %.

жидкость возрастает за счет увеличения числа ионных частиц, достигая значения 3.9 мСм/см при массовом соотношении BMIm/I: (PVdF-HFP), равном 4 : 1. Однако дальнейший рост ионной жидкости приводит к уменьшению ионной проводимости из-за ионной агрегации (рис. 7а).

Рис. 6. Изменение электропроводности и степени кристалличности полимерного электролита (PVdF–HFP)– BMIm/Br в зависимости от концентрации ионной жидкости (ИЖ). Взято из работы [2].

Рис. 7. Электропроводность полимерного электролита (PVdF–HFP)–ионная жидкость при комнатной температуре как функция концентрации ионной жидкости. а – BMIm/I [134], 6 – EMIm/Br [140].

При добавлении бромида 1-этил-3-метилимидазолия (EMIm/Br) (~10 мас. %) в исходный полимер PVdF—HFP проводимость системы также возрастает, достигая значения 4.82 × 10⁻³ См/см при концентрации ионной жидкости 70 мас. %, а при дальнейшем увеличении концентрации EMIm/Br остается практически неизменной [140] (рис. 76).

В работе [129] были получены полимерные электролитные пленки на основе PVdF—HFP с различным содержанием ионной жидкости трицианометанида 1-этил-3-метилимидазолия (EMIm/TCM). Ионная проводимость полимерных электролитных пленок увеличивается с повышением содержания ионной жидкости в исходном полимере, достигая максимальной величины 37 мСм/см при степени допирования 300 мас. %, что выше электропроводности чистой ионной жидкости. Установлено, что пленки, содержащие до 400 мас. % ионной жидкости (максимум) механически устойчивы, но при более высоком содержании ионной жидкости (т.е. при 450 мас. %) полимер становится очень хрупким и трудно обрабатываемым. Электрохимическое окно пленки оптимизированного состава с позиций электропроводности и механической прочности составило 2 В.

Влияние эфирных заместителей в ионных жидкостях на основе имидазолия и аммония на характеристики электрохимических конденсаторов с двойным слоем, состоящих из гелевого полимерного электролита (PVdF–HFP)–ионная жидкость и электрода из восстановленного оксида графена исследовано в работе [141]. Несмотря

Рис. 8. а – Электропроводность полимерного электролита (PVdF-HFP)–BMIm/I–CNTs с различным массовым соотношением CNTs : PVdF–HFP при массовом соотношении BMIm/I : PVdF–HFP, равном 4 : 1 [134]; 6 – электропроводность полимерного электролита (PVdF–HFP)–EMIm/BF₄–оксид графена (GO) в зависимости от содержания оксида графена. Массовое соотношение EMIm/BF₄: PVdF–HFP равно 2 [126].

на то, что размер аммонийных катионов и вязкость ионной жилкости с ними больше, чем v солей, содержащих имидазольные катионы, электропроводность полимерного электролита с ними выше. По мнению авторов, имеются две причины и обе приводят к уменьшению физического взаимодействия между полимерной матрицей и ионной жилкостью: 1) гидрофобный характер PVdF-HFP, возможно, позволил мобилизовать катионные эфирные группы, которые имеют относительно более высокий гидрофильный характер, и 2) трехмерная структура катионов на основе аммония предотвратила вероятность стэкинга, который может произойти в π -системе из-за относительно плоской структуры катионов имидазолия. Кроме того, ионные жидкости, содержащие аммонийные катионы, в большей степени уменьшают степень кристалличности PVdF-HFP по сравнению с ионными жилкостями, содержащими имидазольные катионы. Результаты показали, что присутствие эфирных групп в ионной жидкости на основе имидазола и более длинных эфирных групп в ионной жидкости на основе аммония может увеличить емкость из-за более плотной упаковки ионов на поверхности электрода.

В работе [142] исследовано влияние алкиламмонийных катионов на термические (температур фазовых переходов и разложения) и электрохимические (электропроводность, электрохимическое окно) характеристики мембран из PVdF— HFP, допированных протонными ионными жидкостями на основе трифторацетат-аниона и диэтил-, диметилэтил-, триэтил-, трибутил-, диизопропилэтил-, триэтаноламмония. Электропроводность полученных мембран возрастает в ряду катионов TBA(DIPEA)—TEA(TEOA)—DMEA(DEA). Мембраны имеют широкое электрохимическое окно, которое лежит в пределах 6.1–7.6 В при 50°С и сужается по мере повышения температуры. Наибольшее значение ЭХО имеет мембрана с TBA/TFA, а наименьшее – мембрана с DMEA/TFA.

Для получения полимерного электролита (PVdF-HFP)-BMIm/I с более высокой ионной проводимостью в него вводят углеродные нанотрубки (CNTs) [134]. По мере увеличения массового отношения CNTs/PVdF-HFP ионная проводимость сначала возрастает, а затем падает При (рис. 8a). массовом соотношении CNTs/PVdF-HFP, равном 2: 1000 была достигнута максимальная ионная проводимость 17.6 мСм/см, которая почти в 4.5 раза выше электропроводности полимерного электролита (PVdF-HFP)-BMIm/I без CNTs. Увеличение ионной проводимости при добавлении CNTs, возможно, связано с тем, что CNTs формирует сеть каналов в полимерном электролите для быстрого переноса ионов, а также способствует диссоциации ионной жидкости, что приводит к более высокой концентрации ионов. Однако добавление слишком большого количества CNTs может блокировать перенос ионов, что вызывает снижение ионной проводимости.

Аналогичное влияние добавки оксида графена (GO) на электропроводность полимерного электролита (PVdF–HFP)–EMIm/BF₄ было изучено в работе [126]. При введении лишь небольшого количества оксида графена (1 мас. %) в полимерный электролит резко увеличивается ионная проводимость (на ~260%) по сравнению с чистым полимерным электролитом. Из-за обилия кислородсодержащих функциональных групп на поверхности и краях листов оксид графена взаи-

фазу и таким образом увеличивая ионную проводимость полимерного электролита. Кроме того, благодаря однородному распределению оксида графена в виде трехмерной сетки в (PVdF-HFP)-EMIm/BF₄ создается сеть непрерывных и взаимосвязанных транспортных каналов для облегчения переноса ионов, что так же приводит к значительному увеличению ионной проводимости. При дальнейшем повышении содержания оксида графена в полимерном электролите его избыточное количество блокирует эти транспортные каналы, в результате чего снижается электропроводность (рис. 8б). Изготовленный с использованием (PVdF-HFP)-2EMIm/BF₄-оксид графена в качестве полимерного электролита твердотельный суперконденсатор демонстрирует меньшее внутреннее сопротивление, более высокую емкость и лучшую стабильность цикла, чем суперконденсатор с (PVdF-HFP)-2EMIm/BF₄ и суперконденсатор с EMIm/BF₄. Эти превосходные характеристики обусловлены высокой ионной проводимостью, отличной совместимостью с углеродными электродами и долгосрочной стабильностью полимерного электролита, допированного оксидом графена.

При увеличении концентрации наполнителя, многослойных графеновых нанолистов (ad-GNSs), электропроводность полимерного электролита (PVdF-HFP)-EMIm/TFSI также сначала возрастает почти в 2 раза, а при дальнейшем повышении концентрации ad-GNSs незначительно снижается [128]. Полученный полимерный электролит (PVdF-HFP)-EMIm/TFSI-(ad-GNSs) имеет очень хорошую термическую стабильность до 400°С и широкое электрохимическое окно (3 В). Твердотельный суперконденсатор на основе коммерческого активированного угля с использованием модифицированного полимерного электролита показывает улучшенные электрохимические характеристики по сравнению с соответствующим полностью твердотельным суперконденсатором, использующим полимерный электролит (PVdF-HFP)-EMIm/TFSI без добавок ad-GNSs. В частности, достигается меньшее внутреннее сопротивление и сопротивление переноса заряда, более высокая удельная емкость, лучшие показатели скорости и стабильности циклирования.

В работе [119] при изучении влияния неорганических наполнителей, наночастиц TiO_2 и ZnO_3 на свойства полимерного электролита (PVdF-HFP)-EMIm/BF₄ было показано, что не только ионная жидкость, но и наночастицы снижают степень кристалличности PVdF-HFP при введении их в полимерную матрицу. Однако при этом значительного увеличения электропроводности не наблюдалось. Изготовленная ячейка электрического двуслойного конденсатора (EDLC) с полимерным электролитом с добавкой TiO₂ демонстрирует более высокую удельную емкость по сравнению с EDLC с наночастицами ZnO из-за более высокой диэлектрической проницаемости TiO₂, который способствует диссоциации ионной жидкости. В первом цикле удельная плотность энергии и удельная мощность для элемента EDLC, изготовленного с использованием электролита с наполнителем TiO₂, полученные при удельном токе 1 А/г, составляют 33.19 Вт · ч/кг и 1.17 кВт/кг соответственно.

В отличие от приведенной работы выше [119] добавление в полимерный электролит (PVdF-HFP)-EMIm/TFSI керамического наполнителя Li_{1.5}Al_{0.33}Sc_{0.17}Ge_{1.5}(PO₄)₃ (LASGP) приводит к значительному росту электропроводности [125], повышает как механическую прочность, так и электрохимическую стабильность пленок.

В работе [122] был получен композитный полимерный электролит на основе PVdF-HFP, ионной жидкости EMIm/BF4 и органического наполнителя сукцинонитрила. Частичная замена ионной жидкости в полимерном электролите (PVdF-HFP)-BMIm/BF4 на сукцинонитрил повышает электропроводность. Присутствие неионогенного и высокополярного сукцинонитрила, обладающего высокой молекулярной диффузией, воскообразной природой, хорошей сольватирующей способностью и высокой диэлектрической проницаемостью, снижает кристалличность PVdF-HFP, способствует диссоциации ионной жидкости и увеличивает подвижность ионов. Полимерный электролит, содержащий оптимизированное соотношение ионная жидкость : сукцинонитрил, имеет ионную проводимость 6.40 мСм/см при комнатной температуре и диапазон электрохимической стабильности 2.9-2.5 В. Симметричная углерол-углеродная твердотельная суперконденсаторная ячейка с данным полимерным электролитом обладает удельной емкостью 176 Ф/г при 0.18 А/г и 138 Ф/г при 8 А/г, показала максимальную мощность 24.5 кВт/кг и плотность энергии 36 Вт ч/кг при удельном токе 1.5 А/г.

Таким образом, к свойствам, позволяющим рассматривать (PVdF-HFP)-ионная жидкость в качестве перспективных полимерных электролитов для использования в различных электрохимических устройствах, относятся главным образом их достаточно высокая ионная проводимость при комнатной температуре (10⁻² См/см), высокая электрохимическая стабильность (до 5В), широкий диапазон рабочих температур (до 300-400°С).

Полимерный электролит (PVdF-HFP)-ионная жидкость-соль Li/Na

Изучению полимерных электролитов для литиевых источников тока, в которых в качестве полимерной матрицы используется PVdF—HFP, посвящено большое количество работ. Ионные жидкости в таких полимерных электролитах выступают или в качестве растворителя солей лития, или в качестве пластификатора, когда используется соль лития в органическом растворителе.

В работе [147] проведено сравнение электрохимических характеристик полимерных электролитов, полученных пропиткой пористого PVdF-HFP растворами солей натрия в ионных жидкостях (EMIm/TFSI, BMIm/TFSI) и в органических растворителях (пропиленкарбонате и фторэтиленкарбонате). Электролит на основе ионных жидкостей обладает такими преимуществами, как высокая термическая стабильность, нелетучесть и большое электрохимическое окно, однако его высокая вязкость сдерживает подвижность ионов натрия как в самой жидкости, так и в полимерной матрице. Кроме того, ион натрия в полимерном электролите на основе ионных жидкостей подвергается сильному взаимодействию с другими ионами, что так же приводит к снижению подвижности. Значения электропроводности такого полимерного электролита в пять раз ниже (около 0.21 и 0.25 мСм см⁻¹ при 30°С) по сравнению с величинами для полимерного электролита на основе солей натрия в органических растворителях. При комнатной температуре значения электропроводности для полимерных электролитов на основе PVdF-HFP, допированных растворами LiTFSI в тетрафтороборате 1-бутил-3-метилимидазолия (BMIm/BF₄) [155, 156, 165], в бис-(трифторметилсульфонил)имиде 1этил-3-метилимидазолия (EMIm/TFSI) [151-153, 157–159, 161, 162, 167], в бис-(трифторметилсульфонил)имиде 1-бутил-3-метилимидазолия (BMIm/TFSI) [133, 160, 163], в зависимости от концентрации ионной жидкости и способа допирования лежат в пределах $1-5 \,\mathrm{MCm}\,\mathrm{cm}^{-1}$. С увеличением содержания ионной жидкости в полимерном электролите (PVdF-HFP)-ионная жидкость-соль лития электропроводность сначала возрастает, а потом снижается [152, 167] аналогично рассмотренному выше влиянию концентрации ионной жидкости на электропроводность полимерного электролита (PVdF-HFP)-ионная жидкость. Как показано в работах [151, 160, 164, 170], введение наполнителей в полимерную матрицу также увеличивает электропроводность, однако оно не столь значительно, и электропроводность полимерного электролита имеет тот же повеличин. без добавления рядок что И наполнителя. В то же время необходимо отметить, что введение наполнителей повышает термическую и электрохимическую стабильность полимерных электролитов. Более значительное увеличение электропроводности на один-два порядка наблюдается в системах, где ионные жидкости используются в качестве пластификатора, а допирование полимерной матрицы проводят раствором соли лития в органическом растворителе [125].

Аналогичные результаты были получены в работе [148] для полимерного электролита, в котором раствор соли натрия (NaTFSI) в ионной жидкости (BMIm/TFSI) был включен в полимерную матрицу PVdF–HFP. С повышением содержания раствора в полимерном электролите ионная проводимость увеличивается, и самое высокое значение 1.9×10^{-3} См см⁻¹ при 30°С было достигнуто при содержании раствора 70%, при этом полимерный электролит термически стабилен до 368°С и имеет широкое электрохимическое окно 4.2 В. Сообщается об образовании полярной β-фазы в матрице в присутствии раствора, которая увеличивается с повышением его содержания. Кроме того, обнаружено снижение температуры стеклования с увеличением содержания раствора из-за пластифицирующего эффекта ионной жидкости. Исследована электрохимическая эффективность полуэлемента (Na-NMC/PE/Na), где PE - полимерный электролит оптимизированного состава, выступающий в качестве сепаратора, Na-NMC катод и Na-металлическим анодом. Ячейка обеспечивает удельную разрядную емкость 108 мА ч г⁻¹ при скорости 0.1°С. После 200 циклов зарядаразряда емкость сохраняется на 94%, что служит показателем высокой циклируемости.

Сравнительный анализ результатов исследования полимерных электролитов на основе матриц из полиэтиленоксида, PVdF, PVdF-HFP, полиметилметакрилата, полиакрилонитрила, поливинилхлорида, полиакрилатов показал [176], что среди рассмотренных полимеров PVdF–HFP является наиболее перспективным полимером при разработке новых электролитов для литиевых источников тока.

ЗАКЛЮЧЕНИЕ

Полимерные электролиты на основе ионной жидкости благодаря хорошей ионной проводимости, механической, термической, химической и электрохимической стабильности составляют превосходную альтернативу жидким электролитам и могут быть использованы в различных электрохимических устройствах. В настоящей работе представлен обзор литературы в области полимерных электролитов типа полимер+ионная жидкость, а также композитных систем на их основе, применяемых в качестве мембран в топливных элементах, батарейках и суперконденсаторах. В качестве полимерной матрицы рассмотрены полибензимидазол и поли(винилиденфторид-со-гексафторпропилен), а среди ионных жидкостей основное внимание уделено элек-

Полибензимидазолы, допированные протонгенерирующими добавками, являются на сегодняшний день наиболее перспективными материалами для изготовления протонпроводящих мембран, для среднетемпературных топливных элементов. Использование протонной ионной жидкости как протонного проводника в PBIмембране дает возможность сушественно расширить температурный интервал работы топливного элемента в высокотемпературную область по сравнению с мембранами РВІ-кислота. Введение ионной жидкости в полимерную мембрану PBI-кислота приводит не только к улучшению механических свойств мембран, но и повышает термическую стабильность и электропроводность.

Использование PVdF–HFP в качестве матрицы при изготовлении полимерных электролитов позволило увеличить растворимость в различных органических растворителях, понизить кристалличность, увеличить механическую прочность. Полимерные электролиты (PVdF–HFP)–ионная жидкость обладают достаточно высокой ионной проводимостью при комнатной температуре и электрохимической стабильностью, широким диапазоном рабочих температур.

Многочисленные исследования показали, что ионные жидкости в составе полимерного электролита (PVdF–HFP)–ионная жидкость–соль Li/Na для химических источников тока благодаря своим уникальным свойствам (высокая ионная проводимость, широкое электрохимическое окно, невоспламеняемость, незначительное давление пара, отличная смешиваемость с традиционными жидкими электролитами и хорошая термостабильность) являются перспективной альтернативой традиционным органическим пластификаторам (этиленкарбонату, пропиленкарбонату, диэтилкарбонату, полиэтиленгликолю и т.д.).

Показано, что введение в состав рассмотренных полимерных электролитов неорганических наполнителей (диоксидов кремния, титана, циркония, оксида графена, углеродных нанотрубок, слоистых силикатов) улучшает их механические, термические и химические свойства.

ПРИЛОЖЕНИЕ

Катионы					
AEIm	3-аллил-1-этилимидазолий				
AMIm	3-аллил-1-метилимидазолий				
AMEtA	N-метил-2-(2-метоксиэтокси)-N,N-бис[2-(2-метоксиэтокси)этил]этан-1-аммоний				
AMEtIm	N-метил-2-(2-метоксиэтокси)-N,N-бис-[2-(2-метоксиэтокси)этил] имидазолий				
ApMIm	1-(3-аминопропил)-3-метилимидазолий				
BIm	1-бутилимидазолий				
BMIm	1-бутил-3-метилимидазолий				
C ₃ CNMIm	1-цианометил-3-метилимидазолий				
DEA	диэтиламмоний				
DEMA	диэтилметиламмоний				
DEMMsA	N,N-диэтил-N-метил-N-(2-метоксиэтил) аммоний				
DIPEA	диизопропилэтиламмоний				
DMEA	диметилэтиламмоний				
DMEtOHA	N,N-диметил-N-(2-гидроксиэтил)аммоний				
EIm	1-Н-3-этилимидазолий				
EMIm	1-этил-3-метилимидазолий				
HMIm	1-гексил-3-метилимидазолий				
MIm	1-Н-3-метилимидазолий				
MMEtA	N-метил-N-трис(2-метоксиэтил) аммоний				
MsMIm	1-(3-триметоксисилилпропил)-3-метилимидазолий				
MtOHTMA	(2-гидроксиметил) триметиламмоний				
OHEMIm	1-(2-гидроксиэтил)-3-метилимидазолий				

Список использованных в статье сокращений

PDEIm	поли(1,2-диэтоксиэтилимидазолий)
$Pr(MIm)_2$	1,3-ди(3-метилимидазолия) пропан
SEMA	2-сульфоэтилметиламмоний
TBA	трибутиламмоний
TEA	триэтиламмоний
TEOA	триэтаноламмоний
TESPA	триэтил(3-сульфопропил)аммоний
TetEA	тетраэтиламмоний
	Анионы
BF_4	тетрафтороборат
Br	бромид
CF ₃ BF ₃	трифтор(трифторметил)борат
$C_2F_5BF_3$	(перфторэтил)трифторборат
(CH ₃) ₂ PO ₄	диметилфосфат
Cl	хлорид
DCA	дицианамид
H_2PO_4	дигидрофосфат
HSO ₄	гидросульфат
Ι	иодид
NCS	тиоцианат
NfO	нонафтор-1-бутансульфонат
PF ₆	гексафторфосфат
ТСВ	тетрацианоборат
TCM	трицианометанид
TFA	трифторацетат
TfO	трифторметансульфонат
TFSI	<i>бис-</i> (трифторметилсульфонил)имид
	Наполнители
CNTs	углеродные нанотрубки
ETS	функционализированный микропористый материал титаносиликатного типа
GNSs	нанолисты графена
GO	оксид графена
rGO-PEG-NH ₂	ковалентно связанный 2,2"-(этилендиокси)бис(этиламин) с восстановленным оксидом графена
IPTS	3-(триэтоксисилил)пропил изоцианат
LASGP	$Li_{1.5}Al_{0.33}Sc_{0.17}Ge_{1.5}(PO_4)_3$
MDA	дендример на основе меламина, функционализированный мезопористым кремнезем SBA-15
NaY	цеолит натриевого типа
NH ₄ BEA	крупнопористый цеолит
$SiO_2\text{-}Poly(VPIM/TFSI)$	ионная жидкость, ковалентно связанная с наночастицами кремнезема
SN	сукцинонитрил
SWCNT	одностенная углеродная нанотрубка
TAIC	триаллилизоцианурат
	Полимеры
PBI	поли-2,2'-(м-фенилен)-5,5'-ди(бензимидазол)

производное полибензимидазола, содержащее бензофурановые фрагменты

270

PBI-O-Ph

САФОНОВА, ШМУКЛЕР

P(MMA-co-BMA)	поли(метилметакрилат– <i>со</i> –бутилметакрилат)
pPBI	пористый полибензимидазол
PVdF-HFP	поли(винилиденфторид- <i>со</i> -гексафторпропилен)
PVP	поли(винилпирролидон)
SPEEK	сульфированный полиэфирэфиркетон
	Растворители
DEC	диэтиленкарбонат
DMC	диметилкарбонат
DME	диметоксиэтан
DMF	диметилформамид
DOL	диоксолан
EC	этиленкарбонат
PC	пропиленкарбонат
TEGDME	диметиловый эфир тетраэтиленгликоля

СПИСОК ЛИТЕРАТУРЫ

- 1. Terasawa N., Asaka K. // Mater. Today: Proc. 2020. V. 20. P. 265.
- 2. Natha A.K., Talukdar R. // Int. J. Polym. Anal. Charact. 2020. V. 25. № 8. P. 597.
- 3. Lan J., Li Y., Yan B., Yin C., Ran R., Shi L.-Y. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 37597.
- 4. Ullah Z., Khan A.S., Muhammad N., Ullah R., Alqahtani A.S., Sha S.N., Ghanem O.B., Bustam M.A., Man Z. // J. Mol. Liq. 2018. V. 266. P. 673.
- 5. Singhal S., Agarwal S., Singh M., Rana S., Arora S., Singhal N. // J. Mol. Liq. 2019. V. 285. P. 299.
- 6. Черникова Е.А., Глухов Л.М., Красовский В.Г., Кустов Л.М., Воробьева М.Г., Коротеев А.А. // Успехи химии. 2015. Т. 84. С. 875.
- 7. Fabre E., Murshed S.M.S. // J. Mater. Chem. A. 2021. V. 9. P. 15861.
- 8. Alashkar A., Al-Othman A., Tawalbeh M., Qasim M. // Membranes. 2022. V. 12. № 2. P. 178.
- 9. Liu C., Chen B., Shi W., Huang W., Qian H. // Mol. Pharmaceutics. 2022. V. 19. № 4. P. 1033.
- 10. Sun L., Zhuo K., Chen Y., Du Q., Zhang S., Wang J. // Adv. Funct. Mater. 2022. V. 32. № 27. P. 2203611.
- 11. Zhuang W., Hachem K., Bokov D., Ansari M.J., Nakhjiri A.T. // J. Mol. Liq. 2022. V. 349. P. 118145.
- 12. Kaur G., Kumar H., Singla M. // J. Mol. Liq. 2022. V. 351. P. 118556.
- 13. Jiang W., Li X., Gao G., Wu F., Luo C., Zhang L. // Chem. Eng. J. 2022. V. 445. P. 136767.
- 14. Yudaev P.A., Chistyakov E.M. // Chem. Eng. 2022. V. 6. № 1. P. 6.
- 15. Singh S.K., Savoy A.W. // J. Mol. Liq. 2020. V. 297. P. 112038.
- 16. Lebedeva O., Kultin D., Kustov L. // Nanomaterials. 2021. V. 11. № 12. P. 3270.
- 17. Dhameliya T.M., Nagar P.R., Bhakhar K.A., Jivani H.R., Shah B.J., Patel K.M., Patel V.S., Soni A.H., Joshi L.P., Gajjar N.D. // J. Mol.
- 18. Karimi B., Tavakolian M., Akbari M., Mansouri F. // ChemCatChem. 2018. V. 10. № 15. P. 3173.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

- 19. Richter J., Ruck M. // Molecules. 2020. V. 25. № 1. P. 78.
- 20. Noroozi-Shad N., Gholizadeh M., Sabet-Sarvestani H. // J. Mol. Struct. 2022. V. 1257. P. 132628.
- 21. Ponkratov D.O., Shaplov A.S., Vygodskii Y.S. // Polymer Science C. 2019. V. 61. № 1. P. 2.
- 22. Asrami M.R., Tran N.N., Nigam K.D.P., Hessel V. // Sep. Purif. Technol. 2021. V. 262. P. 118289.
- 23. Yan W.-W., Wei X.-Y., Wang M.-X., Zong Z.-M. // Ind. Eng. Chem. Res. 2022. V. 61. № 13. P. 4481.
- 24. Quijada-Maldonado E., Romero J. // Curr. Opin. Green Sustainable Chem. 2021. V. 27. P. 100428.
- 25. Kazmi B., Taqvi S.A.A., Ali S.I. // ChemBioEng Rev. 2022. V. 9. № 2. P. 190.
- 26. Guo J., Tucker Z.D., Wang Y., Ashfeld B.L., Luo T. // Nat. Commun. 2021. V. 12. P. 437.
- 27. Xu C., Yang G., Wu D., Yao M., Xing C., Zhang J., Zhang H., Li F., Feng Y., Qi S., Zhuo M., Ma J. // Chem. Asian. J. 2021. V. 16. P. 549.
- 28. Osada I., de Vries H., Scrosati B., Passerini S. // Angew. Chem. Int. Ed. 2016. V. 55. P. 500.
- 29. Sultana S., Ahmed K., Jiwanti P.K., Wardhana B.Y., Shiblee MD N.I. // Gels. 2022. V. 8. № 1. P. 2.
- 30. Elwan H.A., Thimmappa R., Mamlouk M., Scott K. // J. Power Sources. 2021. V. 510. P. 230371.
- 31. Yin L., Li S., Liu X., Yan T. // Sci. China Mater. 2019. V. 62. № 11. P. 1537.
- 32. Eshetu G.G., Mecerreyes D., Forsyth M., Zhang H. Armand M. // Mol. Syst. Des. Eng. 2019. V. 4. P. 294.
- 33. Ray A., Saruhan B. // Materials. 2021. V. 14. P. 2942.
- 34. Shaplov A.S., Ponkratov D.O., Vlasov P.S., Lozinskaya E.I., Malyshkina I.A., Vidal F., Aubert P.-H., Armand M., Vygodskii Y.S. // Polymer Science B. 2014. V. 56. № 2. P. 164.
- 35. Egorova K.S., Ananikov V.P. // J. Mol. Liq. 2018. V. 272. P. 271.
- 36. Dinis T.B.V., e Silva F.A., Sousa F., Freire M.G. // Materials. 2021. V. 14. № 21. P. 6231.
- 37. Gandhewar N., Shende P. // Ionics. 2021. V. 27. P. 3715.

том 65 Nº 4 2023

- Curreri A.M., Mitragotri S., Tanner E.E.L. // Adv. Sci. 2021. V. 8. P. 2004819.
- Hayes R., Warr G.G., Atkin R. // Chem. Rev. 2015.
 V. 115. P. 6357.
- 40. *Hunt P.A., Ashworth C.R., Matthews R.P.* // Chem. Soc. Rev. 2015. V. 44. P. 1257.
- 41. Abe H. // J. Mol. Liq. 2021. V. 332. P. 115189.
- Nordness O., Brennecke J.F. // Chem. Rev. 2020. V. 120. P. 12873.
- 43. Shmukler L.E., Fedorova I.V., Fadeeva Yu.A., Safonova L.P. // J. Mol. Liq. 2021. V. 321. P. 114350.
- Fabre E., Murshed S.M.S. // J. Mater. Chem. A. 2021. V. 9. P. 15861.
- 45. Buettner C.S., Cognigni A., Schröder C., Bica-Schröder K. // J. Mol. Liq. 2022. V. 347. P. 118160.
- Shaplov A.S., Ponkratov D.O., Vygodskii Y.S. // Polymer Science B. 2016. V. 58. № 2. P. 73.
- Kazakov A., Magee J.W., Chirico R.D., Paulechka E., Diky V., Muzny C.D., Kroenlein K., Frenkel M. "NIST Standard Reference Database 147: NIST Ionic Liquids Database – (ILThermo)", Version 2.0, National Institute of Standards and Technology, Gaithersburg MD, 20899.
- 48. *Zhang S., Lu X., Zhou Q., Li X., Zhang X., Li S. //* Ionic Liquids: Physicochemical Properties. Elsevier, 2009.
- 49. Bocharova V., Sokolov A.P. // Macromolecules. 2020. V. 53. № 11. P. 4141.
- 50. Yue K., Zhai C., Gu S., Yeo J., Zhou G. // Electrochim. Acta. 2022. V. 401. P. 139527.
- Atik J., Thienenkamp J.H., Brunklaus G., Winter M., Paillard E. // Electrochim. Acta. 2021. V. 398. P. 139333.
- 52. Yang Y., Wu Q., Wang D., Ma C., Chen Z., Su Q., Zhu C., Li C. // J. Membr. Sci. 2020. V. 612. P. 118424.
- Musa M.T., Shaari N., Kamarudin S.K. // Int. J. Energy Res. 2021. V. 45. P. 1309.
- Khatmullina K.G., Baimuratova G.R., Lesnichaya V.A., Shuvalova N.I., Yarmolenko O.V. // Polymer Science A. 2018. V. 60. № 2. P. 222.
- Ahmad S., Nawaz T., Ali A., Orhan M.F., Samreen A., Kannan A.M. // Int. J. Hydrogen Energy. 2022. V. 47. P. 19086.
- 56. Guo Z., Chen J., Byun J.J., Perez-Page M., Ji Z., Zhao Z., Holmes S.M. // J. Membr. Sci. 2022. V. 641. P. 119868.
- 57. *Kim J., Kim K, Ko T., Han J., Lee J.-C.* // Int. J. Hydrogen Energy. 2021. V. 46. P. 12254.
- Kumar S., Manikandan V.S., Palai A.K., Mohanty S., Nayak S.K. // Solid State Ionics. 2019. V. 332. P. 10.
- Vinoth S., Kanimozhi G., Hari Prasad K., Harish Kumar, Srinadhu E.S., Satyanarayana N. // Polym. Compos. 2019. V. 40. P. 1585.
- Jamil R., Silvester D.S. // Curr. Opin. Electrochem. 2022. V. 35. P. 101046.
- Shalu, Singh R.K., Dhar R. // Int. J. Energy Res. 2021. V. 45. P. 15646.
- 62. Ebrahimi M., Kujawski W., Fatyeyeva K., Kujawa J. // Int. J. Mol. Sci. 2021. V. 22. P. 5430.
- 63. *Shaari N., Ahmad N.N.R., Bahru R., Leo C.P.* // Int. J. Energy Res. 2022. V. 46. P. 2166.

- 64. Rathnayake R.M.L.L., Perera K.S., Vidanapathirana K.P. // AIMS Energy. 2020. V. 8. № 2. P. 231.
- 65. *Sharma J.P., Bharti V. //* IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 961. P. 012005.
- Yang G., Song Y., Wang Q., Zhang L., Deng L. // Mater. Des. 2020. V. 190. P. 108563.
- Khoo K.S., Chia W.Y., Wang K., Chang C.-K., Leong H.Y., Maaris M.N.B., Show P.L. // Sci. Total Environ. 2021. V. 793. P. 148705.
- Escorihuela J., Olvera-Mancilla J., Alexandrova L., del Castillo L.F., Vicente Compañ V. // Polymers. 2020. V. 12. P. 1861.
- 69. Wong C.Y., Wong W.Y., Loh K.S., Lim K.L. // React. Funct. Polym. 2022. V. 171. P. 105160.
- 70. Seng L.K., Masdar M.S., Shyuan L.K. // Membranes. 2021. V. 11. P. 728.
- 71. *Elwan H.A., Mamlouk M., Scott K.* // J. Power Sources. 2021. V. 484. P. 229197.
- Bakonyi P., Koók L., Rózsenberszki T., Tóth G., Bélafi-Bakó K., Nemestóthy N. // Membranes. 2020. V. 10. P. 16.
- Vázquez-Fernández I., Raghibi M., Bouzina A., Timperman L., Bigarré J., Anouti M. // J. Energy Chem. 2021. V. 53. P. 197.
- Vázquez-Fernández I., Bouzina A., Raghibi M., Timperman L., Bigarré J., Anouti M. // J. Mater. Sci. 2020. V. 55. P. 16697.
- Mondal S., Papiya F., Ash S.N., Kundu P.P. // J. Environ. Chem. Eng. 2021. V. 9. P. 104945.
- 76. *Kumar S.R., Wang J.-J., Wu Y.-S., Yang C.-C., Lue S.J.* // J. Power Sources. 2020. V. 445. P. 227293.
- Hou C., Zhang X., Li Y., Zhou G., Wang J. // J. Membr. Sci. 2018. V. 550. P. 136.
- Kumar P., Bharti R.P. // J. Electrochem. Soc. 2019.
 V. 166. № 15. P. F1190.
- Karuppasamy K, Theerthagiri J., Vikraman D, Yim C.-J., Hussain S., Sharma R., Maiyalagan T., Qin J., Kim H.-S. // Polymers. 2020. V. 12. P. 918.
- Josef E., Yan Y., Stan M.C., Wellmann J., Vizintin A., Winter M., Johansson P., Dominko R., Guterman R. // Isr. J. Chem. 2019. V. 59. P. 832.
- Tang X., Lv S., Jiang K., Zhou G., Liu X. // J. Power Sources. 2022. V. 542. P. 231792.
- Park M.J., Choi I., Hong J., Kim O. // J. Appl. Polym. Sci. 2013. V. 129. P. 2363.
- 83. Ye W., Wang H., Ning J., Zhong Y., Hu Y. // J. Energy Chem. 2021. V. 57. P. 219.
- Ye Y.-S., Rick J., Hwang B. // J. Mater. Chem. A. 2013. V. 1. P. 2719.
- Lin J., Willbold S., Zinkevich T., Indris S., Korte C. // J. Mol. Liq. 2021. V. 342. P. 116964.
- Niu B., Luo S., Lu C., Yi W., Liang J., Guo S., Wang D., Zeng F., Duan S., Liu Y., Zhang L., Xu B. // Solid State Ionics. 2021. V. 361. P. 115569.
- Liu S., Zhou L., Wang P., Zhang F., Yu S., Shao Z., Yi B. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 3195.
- Skorikova G., Rauber D., Aili D., Martin S., Li Q., Henkensmeier D., Hempelmann R. // J. Membr. Sci. 2020. V. 608. P. 118188.

- Mamlouk M., Ocon P., Scott K. // J. Power Sources. 2014. V. 245. P. 915.
- 90. Lin J., Korte C. // Fuel Cells. 2020. V. 20. № 4. P. 461.
- 91. Fadeeva Yu.A., Kuzmin S.M., Shmukler L.E., Safonova L.P. // Russ. Chem. Bull. 2021. V. 70. № 1. P. 56.
- Compañ V., Escorihuela J., Olvera J., García-Bernabe A., Andrio A. // Electrochim. Acta. 2020. V. 354. P. 136666.
- Wang J.T.-W., Hsu S.L.-C. // Electrochim. Acta. 2011. V. 56. P. 2842.
- 94. Van de Ven E., Chairuna A., Merle G., Benito S.P., Borneman Z., Nijmeijer K. // J. Power Sources. 2013. V. 222. P. 202.
- Eguizabal A., Lemus J., Roda V., Urbiztondo M., Barreras F., Pina M.P. // Int. J. Hydrog. Energy. 2012. V. 37. P. 7221.
- 96. Trindade L.G., Zanchet L., Martins P.C., Borba K.M.N., Santos R.D.M., Paiva R.S., Vermeersch L.A.F., Ticianelli E.A., Souza M.O., Martini E.M.A. // Polymer. 2019. V. 179. P. 121723.
- 97. Schauer J., Sikora A., Plíšková M., Mališ J., Mazúrb P., Paidar M., Bouzek K. // J. Membr. Sci. 2011. V. 367. P. 332.
- Rajabi Z., Javanbakht M., Hooshyari K., Badieid A., Adibi M. // New J. Chem. 2020. V. 44. P. 5001.
- 99. Mao T., Wang S., Wang X., Liu F., Li J., Chen H., Wang D., Liu G., Xu J., Wang Z. // ACS Appl. Mater. Interfaces 2019. V. 11. P. 17742.
- 100. Escorihuela J., García-Bernabé A., Montero Á., Sahuquillo Ó., Giménez E., Compañ V. // Polymers. 2019. V. 11. P. 732.
- 101. Wang X., Wang S., Liu C., Li J., Liu F., Tian X., Chen H., Mao T., Xu J., Wang Z. // Electrochim. Acta. 2018. V. 283. P. 691.
- 102. Xu C., Liu X., Cheng J., Scott K. // J. Power Sources. 2015. V. 274. P. 922.
- 103. Eguizábal A., Lemus J., Pina M.P. // J. Power Sources. 2013. V. 222. P. 483.
- 104. Xiao T., Wang R., Chang Z., Fang Z., Zhu Z., Xu C. // Prog. Nat. Sci.: Mater. Int. 2020. V. 30. P. 743.
- 105. Aili D., Henkensmeier D., Martin S., Singh B., Hu Y., Jensen J.O., Cleemann L.N., Li Q. // Electrochem. Energy Rev. 2020. V. 3. P. 793.
- 106. Araya S.S., Zhou F., Liso V., Sahlin S.L., Vang J.R., Thomas S., Gao X., Jeppesen C., Kær S.K. // Int. J. Hydrogen Energy. 2016. V. 41. P. 21310.
- 107. *Quartarone E., Mustarelli P. //* Energy Environ. Sci. 2012. V. 5. P. 6436.
- 108. Li J., Li X., Yu S., Hao J., Lu W., Shao Z., Yi B. // Energy Convers. Manage. 2014. V. 85. P. 323.
- 109. Perry K.A., More K.L., Payzant E.A., Meisner R.A., Sumpter B.G., Benicewicz B.C. // J. Polym. Sci., Polym. Phys. 2014. V. 52. P. 26.
- 110. Maiti T.K., Singh J., Majhi J., Ahuja A., Maiti S., Dixit P., Bhushan S., Bandyopadhyay A., Chattopadhyay S. // Polymer. 2022. V. 255. P. 125151.
- 111. Qu E., Hao X., Xiao M., Han D., Huang S., Huang Z., Wang S., Meng Y. // J. Power Sources. 2022. V. 533. P. 231386.

- 112. Haque M.A., Sulong A.B., Loh K.S., Majlan E.H., Husaini T., Rosli R.E. // Int. J. Hydrogen Energy. 2017. V. 42. P. 9156.
- 113. Subianto S. // Polym. Int. 2014. V. 63. P. 1134.
- 114. Leikin A.Y., Bulycheva E.G., Rusanov A.L., Likhachev D.Yu. // Polymer Science B. 2006. V. 48. № 5–6. P. 144.
- 115. Yang J.S., Cleemann L.N., Steenberg T., Terkelsen C., Li Q.F., Jensen J.O., Hjuler H.A., Bjerrum N.J., He R.H. // Fuel Cells. 2014. V. 14. P. 7.
- Hooshyari K., Javanbakht M., Adibi M. // Int. J. Hydrogen Energy. 2016. V. 42. P. 10870.
- Hooshyari K., Javanbakht M., Adibi M. // Electrochim. Acta. 2016. V. 205. P. 142.
- 118. Dobrovolsky Y.A., Chikin A.I., Sanginov E.A., Chub A.V. // Altern. Energy Ecol. (ISJAEE). 2015. V. 168. P. 22.
- 119. Das S., Ghosh A. // J. Appl. Polym. Sci. 2020. V. 137. № 22. P. 48757.
- 120. Shi M., Yang C., Yan C., Jiang J., Liu Y., Sun Z., Shi W., Jian G., Guo Z., Ahn J.-H. // NPG Asia Mater. 2019. V. 11. P. 61.
- 121. Zhou F., Huang H., Xiao C., Zheng S., Shi X., Qin J., Fu Q., Bao X., Feng X., Müllen K., Wu Z.-S. // J. Am. Chem. Soc. 2018. V. 140. P. 8198.
- 122. Pandey G.P., Liu T., Hancock C., Li Y., Sun X.S., Li J. // J. Power Sources. 2016. V. 328. P. 510.
- 123. Hor A.A., Yadav N., Hashmi S.A. // J. Energy Storage. 2022. V. 47. P. 103608.
- 124. Zhang X., Kar M., Mendes T.C., Wu Y., MacFarlane D.R. // Adv. Energy Mater. 2018. V. 8. P. 1702702.
- 125. Redda H.G., Nikodimos Y., Su W.-N., Chen R.-S., Jiang S.-K., Abrha L.H., Hagosb T.M., Bezabh H.K., Weldeyohannes H.H., Hwang B.J. // Mater. Today Commun. 2021. V. 26. P. 102102.
- 126. Yang X., Zhang F., Zhang L., Zhang T., Huang Y., Chen Y. // Adv. Funct. Mater. 2013. V. 23. P. 3353.
- 127. Guan J., Li Y., Li J. // Ind. Eng. Chem. Res. 2017. V. 56. P. 12456.
- 128. Shi M.-J., Kou S.-Z., Shen B.-S., Lang J.-W., Yang Z., Yan X.-B. // Chin. Chem. Lett. 2014. V. 25. P. 859.
- 129. Kumar S., Singh P.K., Agarwal D., Dhapola P.S., Sharma T., Savilov S.V., Arkhipova E.A., Singh M.K., Singh A. // Phys. Status Solidi A. 2022. V. 219. № 7. P. 2100711.
- Kumar D., Kanchan D.K. // J. Energy Storage. 2019.
 V. 22. P. 44.
- 131. Mališ J., Mazúr P., Schauer J., Paidar M., Bouzek K. // Int. J. Hydrogen Energy. 2013. V. 38. P. 4697.
- 132. Pandey G.P., Hashmi S.A. // J. Mater. Chem. A. 2013. V. 1. P. 3372.
- 133. Shalu, Singh V.K., Singh R.K. // J. Mater. Chem. C. 2015. V. 3. P. 7305.
- 134. Fan L.-Q., Tu Q.-M., Geng C.-L., Wang Y.-L., Sun S.-J., Huang Y.-F., Wu J.-H. // Int. J. Hydrogen Energy. 2020. V. 45. P. 17131.
- 135. Serra J.P., Pinto R.S., Barbosa J.C., Correia D.M., Gonçalves R., Silva M.M., Lanceros-Mendez S.,

Costa C.M. // Sustainable Mater. Technol. 2020. V. 25. P. e00176.

- 136. Tripathi M., Bobade S.M., Gupta M., Kumar Y. // Macromol. Symp. 2019. V. 388. P. 1900029.
- 137. *Mishra K., Hashmi S.A., Rai D.K.* // J. Solid State Electrochem. 2014. V. 18. P. 2255.
- 138. Tripathi M., Tripathi S.K. // Ionics. 2017. V. 23. P. 2735.
- 139. Shalu, Chaurasia S.K., Singh R.K., Chandra S. // J. Phys. Chem. B. 2013. V. 117. P. 897.
- 140. Gupta A., Jain A., Tripathi S.K. // J. Energy Storage. 2020. V. 32. P. 101723.
- 141. Siyahjani S., Oner S., Diker H., Gultekin B., Varlikli C. // J. Power Sources. 2020. V. 467. P. 228353.
- 142. Shmukler L.E., Glushenkova E.V., Fadeeva Yu.A., Gruzdev M.S., Kudryakova N.O., Safonova L.P. // J. Mol. Liq. 2019. V. 283. P. 338.
- 143. *Terasawa N.* // Diamond Relat. Mater. 2019. V. 95. P. 77.
- 144. Nair M.G., Mohapatra S.R., Garda M.-R., Patanair B., Saiter-Fourcin A., Thomas S. // Mater. Res. Express. 2020. V. 7. P. 064005.
- 145. *Nair M.G., Mohapatra S.R.* // Mater. Lett. 2019. V. 251. P. 148.
- 146. Harshlata, Mishra K., Rai D.K. // Mater. Sci. Eng. B. 2021. V. 267. P. 115098.
- 147. Vo D.T., Do H.N., Nguyen T.T., Nguyen T.T.H., Tran V.M., Okada S., Le M.L.P. // Mater. Sci. Eng., B. 2019. V. 241. P. 27.
- 148. Mishra R., Singh S.K., Gupta H., Tiwari R.K., Meghnani D., Patel A., Tiwari A., Tiwari V.K., Singh R.K. // Energy Fuels. 2021. V. 35. P. 15153.
- 149. Syali M.S., Mishra K., Kanchan D.K., Kumar D. // J. Mol. Liq. 2021. V. 341. P. 116922.
- 150. Manfo A.T., Singh P.K., Mehra R.M., Singh R.C., Gupta M. // Recent Innovations Chem. Eng. 2021. V. 14. P. 21.
- 151. Xu P., Chen H., Zhou X., Xiang H. // J. Membr. Sci. 2021. V. 617. P. 118660.
- 152. Chen T., Kong W., Zhang Z., Wanga L., Hu Y., Zhu G., Chen R., Ma L., Yan W., Wang Y., Liu J., Jin Z. // Nano Energy. 2018. V. 54. P. 17.
- 153. *Guo Q., Han Y., Wang H., Xiong S., Liu S., Zheng C., Xie K.* // Solid State Ionics 2018. V. 321. P. 48.
- 154. Singh S.K., Gupta H., Balo L., Shalu, Singh V.K., Tripathi A.K., Verma Y.L., Singh R.K. // Ionics. 2018. V. 24. P. 1895.

- 155. Shalu-Kataria, Balo L., Gupta H., Singh V.K., Singh S.K., Tripathi A.K., Verma Y.L., Singh R.K. // ECS Trans. 2016. V. 73. № 1. P. 183.
- 156. Shalu, Balo L., Gupta H., Singh V.K., Singh R.K. // RSC Adv. 2016. V. 6. P. 73028.
- 157. *Hofmann A., Schulz M., Hanemann T. //* Electrochim. Acta. 2013. V. 89. P. 823.
- 158. Bai J., Lu H., Cao Y., Li X., Wang J. // RSC Adv. 2017. V. 7. P. 30603.
- 159. Yang P.X., Cui W.Y., Li L.B., Liu L., An M.Z. // Solid State Sci. 2012. V. 14. P. 598.
- 160. *Kataria S., Verma Y.L., Gupta H., Singh S.K., Srivastava N., Dhar R., Singh R.K.* // Polym.-Plast. Technol. Mater. 2020. V. 59. № 9. P. 952.
- 161. Yao M., Liu A., Xing C., Li B., Pan S., Zhang J., Su P., Zhang H. // Chem. Eng. J. 2020. V. 394. P. 124883.
- 162. *Huang T., Long M.-C., Wu G., Wang Y.-Z., Wang X.-L.* // ChemElectroChem. 2019. V. 6. P. 3674.
- 163. *Huang T., Long M.-C., Wang X.-L., Wu G., Wang Y.-Z. //* Chem. Eng. J. 2019. V. 375. P. 122062.
- 164. Zalewska A., Dumińska J., Langwald N., Syzdek J., Zawadzki M. // Electrochim. Acta. 2014. V. 121. P. 337.
- 165. Huang K., Wang Y., Mi H., Ma D., Yong B., Zhang P. // J. Mater. Chem. A. 2020. V. 8. P. 20593.
- 166. Hu Z., Chen J., Guo Y., Zhu J., Qu X., Niu W., Liu X. // J. Membr. Sci. 2020. V. 599. P. 117827.
- 167. Guo Q., Han Y., Wang H., Hong X., Zheng C., Liu S., Xie K. // RSC Adv. 2016. V. 6. P. 101638.
- 168. Tang J., Muchakayala R., Song S., Wang M., Kumar K.N. // Polym. Test. 2016. V. 50. P. 247.
- 169. Shalu, Chaurasia S.K., Singh R.K., Chandra S. // J. Appl. Polym. Sci. 2015. V. 132. P. 41456.
- 170. *Khurana S., Chandra A.* // Solid State Ionics. 2019.
 V. 340. P. 115027.
- 171. Kumar Y., Pandey G.P., Hashmi S.A. // J. Phys. Chem. C. 2012. V. 116. P. 26118.
- 172. Karuppasamy K., Anil Reddy P., Srinivas G., Sharma R., Tewari A., Kumar G.H., Gupta D. // J. Solid State Electrochem. 2017. V. 21. P. 1145.
- 173. Karuppasamy K., Reddy P.A., Srinivas G., Tewari A., Sharma R., Shajan X.S., Gupta D. // J. Membr. Sci. 2016. V. 514. P. 350.
- 174. *Li Q., Ardebili H. //* J. Power Sources. 2016. V. 303. P. 17.
- 175. Liu L., Wang X., Yang C., Han P., Zhang L., Gao L., Wu Z, Liu B., Liu R. // Acta Metall. Sin. (Engl. Lett.) 2021. V. 34. P. 417.
- 176. Baskakova Yu.V., Yarmolenko O.V., Efimov O.N. // Russ. Chem. Rev. 2012. V. 81. № 4. P. 367.