—— ТЕОРИЯ И МОДЕЛИРОВАНИЕ —

УДК 541.64:533.12

ПРОНИЦАЕМОСТЬ ПО ГЕЛИЮ ПОЛИМЕРНЫХ МЕМБРАН НА ОСНОВЕ ПОЛИИМИДОВ

© 2023 г. А. А. Аскадский^{а,b,*}, А. В. Мацеевич^а, И. В. Волгин^с, С. В. Люлин^с

^аИнститут элементоорганических соединений им. А.Н. Несмеянова Российской академии наук 119334 Москва, ул. Вавилова, 28, Россия

> ^b Московский государственный строительный университет 129337 Москва, Ярославское ш., 26, Россия

^сИнститут высокомолекулярных соединений Российской академии наук 199004 Санкт-Петербург, Большой пр., 31, Россия

*e-mail: andrey@ineos.ac.ru

Поступила в редакцию 29.11.2022 г. После доработки 17.03.2023 г. Принята к публикации 20.04.2023 г.

Изложен подход к прогнозированию проницаемости для гелия полимерных мембран на основе полиимидов и полиамидоимидов различного строения. Согласно этому подходу, энергия активации процесса проникновения гелия описывается соотношением, в которое входят ван-дер-ваальсов объем повторяющегося звена полимера и набор атомных констант, характеризующих вклад каждого атома и типа межмолекулярного взаимодействия в величину энергии активации. Учитывается вклад имидных циклов, количество ароматических ядер и тип присоединения (*мета-, napa-, opmo-*), вклад полярных групп CF₃, CH₃, CO, Cl, F, SO₂. Неоднократное решение избыточной системы уравнений, построенной на основе предложенного соотношения, позволило определить константы, приводящие к согласию расчетных и экспериментальных данных по проницаемости мембран с коэффициентом корреляции 0.965. Таким образом, показана возможность поиска структур полиимидов и полиамидоимидов с заданной проницаемостью для гелия без длительных и дорогостоящих экспериментов.

DOI: 10.31857/S2308112023700402, EDN: ZFQNPH

Полимерные мембраны перспективны для решения различных задач газоразделения [1, 2], одной из которых является выделение гелия [3–5]. Гелий входит в состав дыхательных смесей и применяется в медицине для лечения органов дыхания. В промышленности гелий используется для создания защитного слоя для выплавки чистых металлов. В ядерных реакторах гелий служит теплоносителем. Жидкий гелий имеет очень низкую температуру кипения (близкую к абсолютному нулю) и поэтому применяется в качестве хладагента для получения сверхнизких температур, что позволяет переводить металл в сверхпроводящее состояние. Гелий также используется в аэрокосмической отрасли, в геологии для обнаружения полезных ископаемых и в ряде других областей.

В качестве основы для полимерных мембранных материалов, обладающих большим потенциалом с точки зрения их применения для выделения гелия, в настоящее время рассматриваются полиимиды [6–10], например, коммерческие полиимиды Upilex-R и Matrimid 5218:

Полиимид Upilex-R имеет температуру стеклования вблизи 300°С, а полиимид Matrimid 5218 около 280°С (рассчитано с помощью компьютерной программы Каскад, Институт элементоорганических соединений Российской академии наук). В связи с этим данные полиимиды могут работать при повышенных температурах. Полиимид Upilex-R имеет экспериментальную температуру стеклования 285°С, а полиимид Matrimid 5218 - температуру 297, 293, 304, 306°С. Для теплостойких полимеров такие температуры стеклования практически одинаковы. Несколько меньшая расчетная температура стеклования для полиимида Matrimid 5218, чем для полиимида Upilex-R, объясняется тем, что расчеты проведены для идеальных структур полимеров. В эксперименте (при анализе методом ДСК) полиимид Matrimid 5218 прогревали при повышенных температурах, и его структура изменялась вследствие деструкции по группам С=О. Программа Каскад позволяет оценить температуру, при которой данная группа деструктирует. Она составляет 280°С. Когда полимер теряет группу С=О, ароматические ядра соединяются напрямую, и температура стеклования повышается.

Одной из особенностей рассматриваемых полиимидов является способность к пленкообразованию, что делает их пригодными для изготовления мембран для разделения газов.

Синтез полиимидов предполагает возможность широкой вариации их химической структуры, и, как следствие, свойств [11]. За счет многообразия химических групп, входящих в состав полиимидов, число их возможных структур огромно. Так, в нашем недавнем исследовании разработана база структур, содержащая 6726950 полиимидов [12]. Очевидно, что исследование транспортных свойств столь большого числа структур экспериментальными методами невозможно. Тем не менее, данное исследование можно провести с применением схем количественных соотношений структура—свойство (QSPR-схем).

На сегодняшний день различными авторами предложено несколько QSPR-схем, с помощью которых возможно прогнозирование газопроницаемости полимеров [13–17]. Среди них схемы L. Robeson с соавторами [14], J.Y. Park и D.R. Paul [15], В. Рыжих с соавторами [16] параметризованы для предсказания транспортных свойств полимеров различных классов, а для прогнозирова-

ния свойств именно полиимидов предназначены лишь две схемы — S. Velioğlu с соавторами [13] и А. Алентьева с соавторами [17]. Указанные схемы разрабатывались с использованием разного набора данных и метрик для оценки ошибок, что затрудняет сравнительный анализ их точности.

В работе [14] проницаемость мембраны *Р* оценивали по формуле

$$\ln P = \sum_{i=1}^{n} \varphi_i \ln P_i, \qquad (1)$$

где n — количество структурных единиц в повторяющемся звене полимера, φ_i — объемная доля *i*-го структурного фрагмента, P_i — проницаемость *i*-го фрагмента. Данный метод основан на суммировании вкладов в проницаемость отдельных структурных единиц. Если в состав полимера входит структурная единица, для которой вклад в проницаемость P_i не известен, расчет проницаемости полимерной мембраны становится невозможен. То же самое относится к методу, предложенному в работе [15].

Таким образом, возникает необходимость разработки более точной QSPR-схемы, лишенной указанных недостатков. Предлагаемый в нашей работе подход является атомистическим. В нем учитывается вклад каждого атома в проницаемость, а также вклад различных полярных групп в энергию межмолекулярного взаимодействия. Поэтому он позволяет рассчитывать проницаемость полиимидов любого химического строения при различных температурах.

Проницаемость *Р* полимерных мембран для различных газов задавали уравнением

$$P = P_0 e^{-\frac{\Delta E}{RT}},\tag{2}$$

в котором P_0 — константа, ΔE — кажущаяся энергия активации процесса проникновения, R универсальная газовая постоянная, T — абсолютная температура. Не претендуя на описание физики проницаемости, в первом приближении пренебрегали энтропийным вкладом и предсказывали величину проницаемости мембран на основании статистической обработки массива из 88 экспериментальных значений проницаемости полиимидов и полиамидоимидов по гелию [18—33]. В первом приближении авторы сочли возможным принять величину $\ln P_0$ постоянной.

Номер атома и атомной группы	Атом или атомная группа	Обозначение атомов и атомных групп	$\Delta E_{i}^{**},$ кДж/моль
1	Углерод	$\Delta E_{\rm C}^{**}$	119.2
2	Водород	$\Delta E_{ m H}^{**}$	66.0
3	Кислород	$\Delta E_{\rm O}^{**}$	154.2
4	Азот	$\Delta E_{ m N}^{**}$	-169.1
5	Сера	$\Delta E_{ m S}^{**}$	464.8
6	Фтор	$\Delta E_{ m F}^{**}$	9.5
7	Хлор	$\Delta E_{ m Cl}^{**}$	-3.2
8	Диполь-дипольное взаимодействие группы SO ₂	ΔE_d^{**}	-600.0
9	Ароматический цикл (скелет) в основной цепи	$\Delta E_{ m ar.c.b}^{ m **}$	-423.9
10	Ароматический цикл (скелет) в боковой цепи	$\Delta E_{\rm ar.c.s}^{**}$	-567.7
11	Пара-замещение	$\Delta E_{\rm p-s}^{**}$	100.6
12	Мета-замещение	ΔE_{m-s}^{**}	277.9
13	Орто-замещение	$\Delta E_{\alpha-s}^{**}$	46.1
14	Диполь-дипольное взаимодействие за счет имидной группы	$\Delta E_{\rm d-i.gr}^{**}$	85.9
15	Влияние объема группы CH ₃	$\Delta E_{d,\mathrm{CH3}}^{**}$	-432.7
16	Влияние электроотрицательности группы CF ₃	$\Delta E_{d, { m CF3}}^{**}$	-527.9
17	Диполь-дипольное взаимодействие за счет группы СО	$\Delta E_{d,\mathrm{CO}}^{**}$	-156.8
18	Диполь-дипольное взаимодействие за счет группы Cl	$\Delta E_{d, Cl}^{**}$	107.6
19	Диполь-дипольное взаимодействие за счет группы F	$\Delta E_{d,\mathrm{F}}^{**}$	-86.7
20	Водородная связь	ΔE_h^{**}	80.3
21	Предэкспоненциальный множитель	$\ln P_0$	7.4

Таблица 1. Атомные константы и параметры, описывающие специфические межмолекулярные взаимодействия

Объединение полиимидов и полиамидоимидов в один класс вызвано тем обстоятельством, что в них имеются атомы азота, находящиеся не только в имидных циклах, но и в амидных группах, что позволяет оценить вклад водородных связей в проницаемость, хотя полиимиды с группами –ОН и –СООН также дают возможность оценить вклад водородных связей. У этих двух разных классов полимеров есть и некоторые другие общие свойства: они имеют в структуре элементарного звена имидный цикл и высокую термостойкость.

Величину ΔE описывали соотношением

$$\Delta E = \frac{\sum_{i} \Delta E_i^{**}}{N_A \sum_{i} \Delta V_i} \tag{3}$$

Здесь $N_{\rm A}$ – число Авогадро, $\sum_i \Delta V_i$ – ван-дер-ваальсов объем повторяющегося звена линейного

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

полимера или повторяющегося фрагмента сетчатого полимера, $\sum_{i} \Delta E_i^{**}$ — энергия межмолекулярного взаимодействия, складывающаяся из энергий взаимодействия каждого атома и специфических атомных групп.

Тогда

$$\ln P = \ln P_0 - \frac{\sum_i \Delta E_i^{**}}{N_A R T \sum_i \Delta V_i}$$
(4)

Полученные атомные константы и параметры, характеризующие энергию сильных межмолекулярных взаимодействий, представлены в табл. 1.

Для расчета приведенных в табл. 1 атомных констант и параметров были рассмотрены полиимиды, химическое строение которых отражено в табл. 2.

том 65 № 2 2023

Поли- мер	Структура	$\frac{\sum_{i} \Delta V_{i}}{A^{3}},$	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
1	$\begin{bmatrix} 0 & 0 & 0 \\ N & N & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	393	4.55 [18]	35	5.4
2	$\begin{bmatrix} 0 & 0 & 0 \\ N & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	395	3.7 [18]	35	3.9
3	BPDA-DADS $\left[\begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	405	7.03 [18]	35	7.2
4	$\begin{array}{c} BPDA-PASN \\ \hline \\ N \\ O \\ O$	458	34.2 [18]	35	42.9
5	$\begin{array}{c} 31(1) 14(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(16) \\ \hline \\ BPDA-HFIP \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	553	4.05 [18]	35	4.8
6	BPDA-BAPE $\left[\begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	573	6.01 [18]	35	5.7

Таблица 2. Химическое строение полиимидов и полиамидоимидов, ван-дер-ваальсовы объемы, проницаемости для гелия

Поли- мер	Структура	$\sum_{i} \Delta V_i,$ \mathring{A}^3	<i>Р</i> _{эксп} , Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
7	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	596	7.5 [18]	35	9.6
8	$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} CF_3 \\ CF_3 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\$	627	18.3 [18]	35	21.5
	43(1) 22(2) 6(3) 2(4) 6(6) 6(9) 4(11) 2(14) 2(16) BPDA-HFBAPP				
9		426	8.91 [18]	35	14.6
	31(1) 20(2) 4(3) 2(4) 4(9) 2(11) 2(14) 2(15) BPDA-MDT				
10	$ \begin{bmatrix} 0 & 0 & Cl \\ N & N & Cl \\ 0 & 0 & 0 \end{bmatrix}_{n} $	421	6.92 [18]	35	6.96
	29(1) 14(2) 4(3) 2(4) 2(7) 4(9) 2(11) 2(14) 2(18) BPDA-CDM				
11	$\begin{bmatrix} 0 & 0 & F \\ N & 0 & F \\ 0 & 0 & F \end{bmatrix}_n$	403	4.34 [18]	35	9.86
	29(1) 14(2) 4(3) 2(4) 2(6) 4(9) 2(11) 2(14) 2(19) BPDA-MFA				
12	$\left[\begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	421	3.67 [18]	35	6.96
	29(1) 14(2) 4(3) 2(4) 2(7) 4(9) 2(11) 2(14) 2(18) BPDA-MCA				

Таблица 2. Продолжение

Поли- мер	Структура	$\frac{\sum_{i} \Delta V_{i}}{\text{\AA}^{3}},$	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
13	$\begin{bmatrix} 0 & 0 & 0 \\ N & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	459	31.8 [18]	35	34.17
14	$\begin{array}{c} BPDA-MDX \\ \hline \\ N \\ O $	390	1.09 [18]	35	3.59
15	28(1) 14(2) 6(3) 2(4) 4(9) 2(11) 2(14) 2(20) BPDA-HAB O O O O O O O O	425	12.0 [18]	35	27.1
16	30(1) 16(2) 6(3) 2(4) 1(5) 1(8) 4(9) 2(14) 2(15) BPDA-TSN $\bigcirc \\ CF_3 \\ CF_3 \\ CF_3 \\ O \\ $	467	33.8 [18] 51.5 [27]	35	37.0
17	31(1) 14(2) 5(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(16) 6FDA-DADE O CF_3 CF_3 CF_3 CF_3 CF_3 CF_3 CF_3 O O O O O O O O	475	32.8 [18]	35	34.5
18	32(1) 16(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(16) 6FDA-DADM $final equation (CF_3) = (CF_3) (CF_3$	635	18.3 [18]	35	19.4

Поли- мер	Структура	$\sum_{i} \Delta V_i,$ \mathring{A}^3	<i>Р</i> _{эксп} , Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
19	$\begin{bmatrix} 0 & CF_3 & 0 \\ N & CF_3 & 0 \\ CF_3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_n$ 34(1) 20(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(15) 2(16)	508	35.1 [18]	35	70.3
20	$\begin{array}{c} \text{6FDA-MDT} \\ \hline \\ N \\ O \\ O$	502	30.4 [18]	35	38.5
21	$\begin{bmatrix} 0 & CF_3 & 0 \\ N & CF_3 & 0 \\ CF_3 & 0 \\ 0 & 0 \end{bmatrix}_n$ 36(1) 24(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(14) 4(15) 2(16) 6FDA-MDX	541	74.4 [18]	35	131.4
22	$ \begin{array}{c} $	471	29.3 [18]	35	24.9
23	$ \begin{array}{c} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	507	104 [18]	35	118.5
24	$\begin{array}{c} \text{6FDA-TSN} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	309	3.20 [18] 9.4 [27]	35 35	4.5 4.5

Таблица 2	2. Продолж	сение
-----------	------------	-------

Поли- мер	Структура	$\sum_{i} \Delta V_{i},$ \mathring{A}^{3}	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
25	$\begin{bmatrix} 0 & 0 \\ N & N & 0 \\ 0 & 0 & 0 \end{bmatrix}_{n}$	317	3.95 [18] 9.4 [27]	35 35	4.3 4.3
26	$PMDA-DADM = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	367	87.0 [18]	35	53.5
27	$\begin{array}{c} \text{PMDA-MDX} \\ \hline \\ 0 \\ 0 \\ \hline \\ \\ 0 \\ \hline \\ \\ \\ \\$	540	120 [19] 137 [20] 135 [21]	35 35 35	159.8
28	34(1) 14(2) 4(3) 2(4) 12(6) 4(9) 2(11) 2(14) 4(16) 6FDA-6FpDA $\begin{pmatrix} 0 & 0 & 0 & CF_3 \\ N & CF_3 & CF_3 & I \\ 0 & 0 & CF_3 & I \\$	476	17.0 [20]	35	25.9
29	32(1) 14(2) 5(3) 2(4) 6(6) 4(9) 2(12) 2(14) 2(16) 1(17) BTDA-6FmDA $0 \\ C \\ $	476	26.7 [20]	35	41.9
30	32(1) 14(2) 5(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(16) 1(17) BTDA-6FpDA $0 \qquad CF_3 \qquad CF_3 \qquad n$ 31(1) 14(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(13) 2(15)	458	58 [20]	35	43.0
	ВРДА-6ГрДА				

Поли- мер	Структура	$\sum_{i} \Delta V_i,$ \mathring{A}^3	<i>Р</i> _{эксп} , Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
31	$\begin{bmatrix} 0 & CF_3 & 0 & CF_3 \\ N & CF_3 & CF_3 & CF_3 & 0 \\ 0 & CF_3 & CF_3 & CF_3 & CF_3 & 0 \\ 0 & CF_3 & CF_3 & CF_3 & 0 \\ 0 & CF_3 & CF_3$	540	48.0 [20]	35	104.3
32	$\begin{array}{c} 6FDA-6FmDA \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	540	137 [20] 135 [21] 139 [21]	35 35 35	159.8
33	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ N & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	480	15.4 [22]	30	13.3
34	34(1) 22(2) 6(3) 2(4) 4(9) 2(12) 2(14) 3(15) 2(17) BDCDA-MPD $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	753	12.9 [22]	30	10.4
35	52(1) 34(2) 10(3) 2(4) 1(5) 1(8) 7(9) 4(11) 1(12) 2(14) 3(15) 2(17) BDCDA-DDSO $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	570	23.1 [22]	30	24.37
36	HDCDA-6F $\left[\begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	646	25.0 [22]	30	26.1
	43(1) 22(2) 0(3) 2(4) 0(0) 3(9) 1(10) 2(11) 1(12) 2(14) 2(16) 2(17) PDCDA-6F				

Таблица 2.	Продолжение
------------	-------------

Поли- мер	Структура	$\frac{\sum_{i} \Delta V_{i}}{\text{\AA}^{3}},$	<i>Р</i> _{эксп} , Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
37	$\left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ N & & & \\ 0 & & & \\ 0 & & & \\ \end{array}\right]_{n}$	638	41.5 [22]	30	51.4
38	43(1) 26(2) 6(3) 2(4) 6(6) 5(9) 2(11) 1(12) 2(14) 3(15) 2(16) 2(17) BDCDA-6F $\bigcirc \\ \bigcirc \\$	520	9.4 [23] 6.1 [24]	35	8.3
39	$\begin{array}{c} 37(1) \ 24(2) \ 6(3) \ 2(4) \ 5(9) \ 2(11) \ 1(12) \ 2(14) \ 2(15) \\ PEI \\ \hline O \\ CE_2 \\ \mu \\ \end{array}$	509	53.4	35	70.8
	N		[25] 60.2 [25]	45	78.0
			69.9 [25]	55	85.5
10	34(1) 20(2) 4(3) 2(4) 6(6) 4(9) 2(11) 2(14) 2(15) 2(16) 6FDA-IPDA	162	70.4	25	40 (1
40	$\left[\begin{array}{c} O \\ N \\ O \\$	462	70.4 [25] 78.2 [25] 85.9 [25]	35 45 55	49.6155.361.24
	32(1) 14(2) 4(3) 2(4) 6(6) 4(9) 2(14) 2(16) 6FDA-DAF				
41	$\left \begin{array}{c} O \\ N \\ N \\ O \\$	487	34.56 [26]	35	42.0
	31(1) 14(2) 6(3) 2(4) 1(5) 6(6) 1(8) 4(9) 2(11) 2(14) 2(16) 6FDA/PPSI-1				
42	$\left[\begin{array}{c} O \\ H \\$	591	34.12 [26]	35	32.28
	37(1) 18(2) 8(3) 2(4) 2(5) 6(6) 2(8) 5(9) 3(11) 2(14) 2(16) 6FDA/PPSI-2				

ПРОНИЦАЕМОСТЬ ПО ГЕЛИЮ ПОЛИМЕРНЫХ МЕМБРАН

Таблица 2. Продолжение

Поли- мер	Структура	$\sum_{i} \Delta V_{i},$ \mathring{A}^{3}	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
43	$\left[\begin{array}{c} 0 \\ -N \\ -N \\ 0 \end{array}\right]_{R} \left[\begin{array}{c} CF_{3} \\ -N \\ -CF_{3} \\ 0 \end{array}\right]_{R} \left[\begin{array}{c} 0 \\ -N \\ $	695	31.76 [26]	35	26.85
44	43(1) 22(2) 10(3) 2(4) 3(5) 6(6) 3(8) 6(9) 4(11) 2(14) 2(16) 6FDA/PPSI-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	309	8.0 [27]	35	4.5
45	$\begin{array}{c} 22(1) \ 10(2) \ 5(3) \ 2(4) \ 3(9) \ 2(11) \ 2(14) \\ \hline \\ PMDA-ODA \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ \hline \\ \\ N \\ \hline \\ \\ \\ \\$	351	37.1 [27]	35	14.8
46	$\begin{bmatrix} O & CF_3 & O \\ O & CF_3 & O \end{bmatrix}_n$ 25(1) 16(2) 4(3) 2(4) 3(9) 2(11) 2(14) 2(15) PMDA-IPDA $\begin{bmatrix} O & CF_3 & O \\ O & CF_3 & O \\ O & CF_3 & O \end{bmatrix}$	475	50.0 [27]	35	34.5
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$				
47	$\begin{bmatrix} 0 & 0 & F & F \\ N & N & F & F \\ 0 & 0 & F & F \end{bmatrix}_n$	413	19.9 [28] 35 [28]	35 80	17.5 31.0
48	$\begin{array}{c} 29(1) \ 12(2) \ 4(3) \ 2(4) \ 4(6) \ 4(9) \ 2(11) \ 2(14) \ 4(19) \\ \\ \hline \\ \hline \\ O \\ \hline \\ \hline$	448	10.3 [28]	35 80	8.7 16.9
	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$		18.2 [28]		

Поли- мер	Структура	$\sum_{i} \Delta V_{i},$ \mathring{A}^{3}	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
49	$\begin{bmatrix} 0 & 0 & HO & OH \\ N & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	406	4.6 [28] 9.2 [28]	35 80	3.1 6.8
50	BPDA-MBHA $ \begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	405	4.4 [28] 8.2 [28]	35 80	7.2 14.4
51	$ \begin{array}{c} O \\ O $	408	31 [28] 51 [28]	35 80	33.3 54.3
52	26(1) 10(2) 6(3) 2(4) 6(6) 3(9) 1(12) 2(14) 2(16) 1(17) 1(20) 6FDA-DABA O CF_3 CF_3 CF_3 CF_3 O O O O O O O O	449	362 [29]	35	289.4
53	$\begin{array}{c} 6FDA-durene \\ \hline \\ N \\ O \\ O$	433	17.0 [30]	20	17.4
54	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	634	16.0 [30]	20	16.5

Поли- мер	Структура	$\sum_{i} \Delta V_i,$ \mathring{A}^3	<i>Р</i> _{эксп} , Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
55	$\begin{bmatrix} 0 & 0 & 0 & CF_3 \\ \parallel & C & \parallel & H & CF_3 \\ 0 & & CH_3 & CF_3 & H \\ 0 & & CH_3 & \end{bmatrix}_n$	499	24.9 [31]	30	41.7
56	32(1) 19(2) 4(3) 3(4) 6(6) 4(9) 2(11) 1(12) 1(14) 1(15) 2(16) 2(20) 1a $\begin{bmatrix} 0 & & & \\ CF_3 & & \\ CF_3 & & \\ CF_3 & & \\ CF_3 & & \\ CF_3$	752	30.9 [31]	30	44.9
57	$\begin{array}{c} 2a \\ \hline 0 \\ C \\ C \\ C \\ C \\ C \\ H_{2} \\ C \\ H_{3} \\ C \\ C \\ C \\ H_{3} \\ C \\ C \\ C \\ H_{3} \\ C \\ $	785	114 [31]	30	70.8
58	50(1) 28(2) 6(3) 4(4) 12(6) 6(9) 2(11) 2(12) 2(14) 2(15) 4(16) 2(20) <u>3a</u> $\begin{bmatrix} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	770	58.3 [31]	30	71.5
59	$51(1) \ 36(2) \ 6(3) \ 4(4) \ 6(6) \ 6(9) \ 2(11) \ 2(12) \ 2(14) \ 6(15) \ 2(16) \ 2(20)$ $3c$ $\int_{C} O + CF_3 + O + CF_3 + O + CF_3 + CF_3$	673	21.4 [31]	30	39.5
60	$45(1) 26(2) 6(3) 4(4) 6(6) 6(9) 2(12) 2(14) 2(15) 2(16) 2(20)$ 3d $\begin{bmatrix} 0 & CF_3 & 0 & CF_3 \\ C & CF_3 & CF_3 & CF_3 & CF_3 & CF_3 \\ C & CF_3 &$	785	92.6 [31]	30	70.8
61	$ \begin{array}{c} & & & & & & \\ 50(1) & 28(2) & 6(3) & 4(4) & 12(6) & 6(9) & 2(11) & 2(12) & 2(14) & 2(15) & 4(16) & 2(20) \\ \hline \underline{4a} \\ & & & \\ & & & \\ \hline \begin{array}{c} & & & \\ $	644	56.7 [31]	30	52.2
	$\frac{5a}{5a}$				

Таблица 2. Продолжение

Поли- мер	Структура	$\sum_{i} \Delta V_{i},$ \mathring{A}^{3}	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
62	$\begin{bmatrix} 0 & & & & & \\ 0 & & & & & \\ C & & & & & \\ C & & & & & \\ 0 & & & & & \\ C & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & &$	722	28.3 [31]	30	31.3
63		736	70.6 [31]	30	61.8
64	$\begin{bmatrix} 0 & H_{3}C & 0 & H_{3}C \\ 0 & N & 0 & H_{3}C & 0 & H_{3}C & 0 \\ 0 & H_{3}C & 0 & -C & -N & -C & -K & -K & -K & -K & -K & -K & -K$	794	86.2 [31]	30	51.1
65	$\begin{bmatrix} 0 & & & & & \\ 0 & & & & & \\ 0 & & & & &$	640	48.7 [31]	30	32.4
66	$\begin{array}{c} \underline{93}\\ \hline \\ 0\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	706	26.0 [31]	30	65.9
67	$ \begin{array}{c} 20 \\ \hline 0 \\ -N \\ -N \\ -O \\ -O$	432	415 [31]	30	152.4

Поли- мер	Структура	$\frac{\sum_{i} \Delta V_{i}}{\text{\AA}^{3}},$	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
68	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	633	230 [32]	30	176.01
69	43(1) 30(2) 4(3) 2(4) 6(6) 5(9) 3(11) 2(14) 6(15) 2(16) PI-3 $\bigcirc CF_3 \bigcirc CH_3 \bigcirc $	600	160 [32]	30	70.9
70	$\begin{bmatrix} 0 & 0 & H_{3}C \\ H_{3}C & \end{bmatrix}_{n}$ 41(1) 26(2) 4(3) 2(4) 6(6) 5(9) 1(11) 2(12) 2(14) 4(15) 2(16) PI-5 $\begin{bmatrix} 0 & CE & 0 & H_{3}C \\ 0 & CE & 0 & H_{3}C \end{bmatrix}$	600	84 [32]	30	70.9
	$ \begin{array}{c} CF_{3} \\ \hline \\ O \\ O \\ \hline \\ O \\ \hline \\ \hline$				
71	$\begin{array}{c} \text{PI-4} \\ \hline \\ \text{PI-4} \\ \hline \\ \text{PI-4} \\ \hline \\ \text{CF}_3 \\ \hline \\ \ \\ \text{CF}_3 \\ \hline \\ \ \\ \text{CF}_3 \\ \hline \\ \ \\ \text{CF}_3 \\ \hline \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	600	47 [32]	30	104.7
72	$\begin{bmatrix} 0'' & 0 & H_3C' & CH_3 \end{bmatrix}_n$ 41(1) 26(2) 4(3) 2(4) 6(6) 5(9) 3(11) 2(14) 4(15) 2(16) PI-2 $\begin{bmatrix} 0 & 0 & CH_n & CH_n \end{bmatrix}_n$	600	71 [32]	30	104.7
	$\begin{array}{c c} CF_3 \\ \hline \\ N \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ \\ O \\ \hline \\ \\ O \\ \hline \\ \\ \\ \\$				
73	$\begin{array}{c} 41(1) \ 26(2) \ 4(3) \ 2(4) \ 6(6) \ 5(9) \ 3(11) \ 2(14) \ 4(15) \ 2(16) \\ PI-1 \\ \hline \\ N \\ \hline \\ N \\ \hline \end{array}$	476	41 [33]	30	47.2
	$\begin{bmatrix} 1 \\ 0 \\ 33(1) 24(2) 6(3) 2(4) 4(9) 1(11) 1(13) 2(14) 5(15) \\ A1 \end{bmatrix}_{n}$				

Таблица 2. Продолжение

Поли- мер	Структура	$\sum_{i} \Delta V_i,$ \mathring{A}^3	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
74	$\left[\begin{array}{c} 0\\ \\ N\\ \\ 0\end{array}\right]_{n} = \left[\begin{array}{c} 0\\ 0\end{array}\right]_{n} = \left[\begin{array}{c} 0\\ \\ 0\end{array}\right]_{n} = \left[\begin{array}{c} 0\\ \\ 0\end{array}\right]_{n} = \left[\begin{array}{c} 0\\ 0\end{array}]$	476	33 [33]	30	47.2
	33(1) 24(2) 6(3) 2(4) 4(9) 1(11) 1(13) 2(14) 5(15) B1				
75		493	72 [33]	30	67.8
76	34(1) 26(2) 6(3) 2(4) 4(9) 1(11) 1(13) 2(14) 6(15)	579	64 [22]	20	76.2
70		320	04[33]	50	70.3
77	$36(1) \ 30(2) \ 6(3) \ 2(4) \ 4(9) \ 1(11) \ 1(13) \ 2(14) \ 7(15)$	544	84 [33]	30	104.3
	37 (1) 32(2) 6(3) 2(4) 4(9) 1(11) 1(13) 2(14) 8(15)				
78		460	34 [33]	30	24.9
	32(1) 22(2) 6(3) 2(4) 4(9) 1(12) 1(13) 2(14) 4(15) B2				

Поли- мер	Структура	$\sum_{i} \Delta V_{i},$ \mathring{A}^{3}	<i>Р_{эксп},</i> Баррер	<i>Т</i> _{эксп} , °С	Р _{расчет} , Баррер
79	$\begin{bmatrix} 0 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	511	63 [33]	30	43.6
80	$D2$ (H_3)	589	20 [33]	30	23.8
81	$\begin{array}{c} 40(1) \ 30(2) \ 8(3) \ 2(4) \ 5(9) \ 2(11) \ 1(13) \ 2(14) \ 3(15) \\ D4 \\ O \\ $	385	Нет	Нет	4.5
82	$\begin{array}{c} O \\ O $	484	22 [35] 21 [36] 26.06 [37]	35 35 35	16.2

Как видно из табл. 2, в большинстве случаев присутствует небольшое отклонение расчетных величин проницаемости от экспериментальных. Однако в ряде случаев отклонения существенные. Значительные отклонения наблюдаются для одного и того же полимера, проницаемость которого по гелию измерена разными авторами. Другая причина отклонения состоит в том, что избыточная система уравнений решалась в первом приближении, в котором не учитывалось расположение групп –СН₃, присоединенных к ароматическим ядрам. Например, в полиимидах 73-74 не учитывалось влияние присоединения групп 🧲 CH_3 в положениях 1–2, 1–3 и 1–4 относительно атома азота. В дальнейшем будет проведен тщательный анализ влияния этой и других особенно-

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ. Серия А

стей химического строения полимера на проницаемость по гелию. В результате решения избыточной системы уравнений, составленной на основе общего соотношения (4), величина $\ln P_0$, которая в первом приближении принята постоянной, оказалась равной 7.4.

Структурная формула каждого полимера в табл. 2 сопровождается уравнением, в котором первое число отражает количество атомов определенного сорта. В частности, первое число отражает количество атомов углерода в повторяющемся звене, второе число соответствует количеству атомов водорода, третье – количеству атомов кислорода, четвертое – количеству атомов азота. Тип атома обозначен в скобках в соответствии с табл. 1. Из нее следует, что учитывается влияние

Рис. 1. Корреляционная диаграмма в логарифмических координатах.

не только количества и типа атомов, но и вклад в межмолекулярное взаимодействие различных полярных групп, а также способ присоединения ароматических ядер (*napa-*, *mema-* и *орто-*присоединение).

В качестве примера рассмотрим составление уравнения для полимера 5, приведенного в табл. 2. Этот полимер содержит 34 атома углерода, 22 атома водорода, 6 атомов кислорода, 2 атома азота. Кроме того, полимер имеет 4 ароматических цикла в основной цепи, 2 *мета*-замещения, 2 имидных цикла, 3 группы $-CH_3$, 2 группы -CO-. Также приведем уравнения для полиимидов Upilex-R и Matrimid 5218. Для полиимида Upilex-R уравнение выглядит следующим образом: 28(1) 14(2) 5(3) 2(4) 4(9) 2(11) 2(14), для полиимида Matrimid 5218 – так: 35(1) 24(2) 5(3) 2(4) 4(9) 1(11) 2(14) 1(17).

На рис. 1 показана корреляция между расчетными и экспериментальными значениями проницаемости, приведенными в табл. 2. Видно, что расчетные и экспериментальные данные хорошо согласуются между собой; коэффициент корреляции составляет 0.965.

Помимо полимеров, представленных в табл. 2, по которым была составлена избыточная система уравнений, нами был проведен расчет для других полиимидов, не использовавшихся для составления избыточной системы уравнений. Эти полиимиды были синтезированы в работе [34], и для них была измерена проницаемость по гелию. Экспериментальные значения проницаемости сопоставлены с результатами нашего расчета в табл. 3. Расчетные и экспериментальные проницаемости удовлетворительно согласуются.

Сравнение расчетных значений проницаемости по гелию, полученных разными методами, затруднительно, поскольку наиболее часто расчетные значения приводятся в публикациях только в виде графиков. Мы проведем такое сравнение только для пяти полиимидов, рассмотренных в работах [13] и [15]. Его иллюстрирует табл. 4.

Можно рекомендовать группу полиимидов с повышенными показателями проницаемости по гелию. Это полиимиды 21, 23, 27, 32, 39–46, 52, 57–58, 60–61, 63–64, 66–72, 75–77. Они содержат в повторяющихся звеньях большое количество групп $-CH_3$ и $-CF_3$, что способствует повышению проницаемости за счет объемных эффектов и электроотрицательности.

Предлагаемый подход к оценке проницаемости полиимидов и полиамидоимидов для гелия компьютеризован; компьютерная программа позволяет проводить такую оценку в автоматическом режиме после задания химического строения полимера пользователем. Результаты настоящей работы показывают, что предлагаемый подход обладает предсказательной силой и позволяет

ПРОНИЦАЕМОСТЬ ПО ГЕЛИЮ ПОЛИМЕРНЫХ МЕМБРАН

Полимер	Структура	$\sum_{i} \Delta V_{i}, \text{\AA}^{3}$	<i>Р</i> _{эксп} , Баррер	Р _{расчет} , Баррер
1		550	12.005	8.6
2	$\left[\begin{array}{c} 0 \\ K \\$	614	34.773	33.9
3	$\left[\begin{array}{c} O \\ CF_3 \\ N \\ CF_3 \\ O \end{array}\right]_n$	396	29.564	58.2
4	$\begin{bmatrix} 0 & CF_3 & 0 \\ N & CF_3 & 0 \\ 0 & 0 & 0 \end{bmatrix}_n$	408	31.349	28.4
5		335	2.082	2.4
6		437.5	9.507	4.9

Полимер	Структура	$\sum_{i} \Delta V_{i}, \text{\AA}^{3}$	<i>Р</i> _{эксп} , Баррер	Р _{расчет} , Баррер
7		329	2.986	3.8
8	$\begin{bmatrix} 0 & 0 \\ N & (CH_2)_6 \\ 0 & 0 \\ 0 & 50\%/50\% \\ n \\ $	438	4.481	4.4

Таблица 3. Окончание

Таблица 4. Проницаемость полиимидов по гелию по данным работы [34] и расчетам с применением различных расчетных схем

Номер образца в	P Fappen [34]	Р _{расч} , Баррер		
работе [34]	1 3Kcn, Dappop [5 1]	настоящая работа [15]		[13]
1	12.005	8.6	37.45	—
2	34.773	33.9	75.78	—
3	29.564	58.2	106.13	—
4	31.349	28.4	70.37	50.52

находить структуры, имеющие заданную проницаемость, без длительных и дорогостоящих экспериментов. Полученные данные могут быть также использованы для разработки моделей нейронных сетей для предсказания транспортных свойств полимеров различных классов по аналогии с работой [12].

Работа выполнена при финансовой поддержке Российского научного фонда (проект 22-13-00066).

СПИСОК ЛИТЕРАТУРЫ

- Imtiaz A., Othman M.H.D., Jilani A., Khan I.U., Kamaludin R., Iqbal J., Al-Sehemi A.G. // Membranes. 2022. V. 12. P 1.
- Iulianelli A., Drioli E. // Fuel Process. Technol. 2020. V. 206. P. 106464.
- Rufford T.E., Chan K.I., Huang S.H., May E.F. // Adsorpt. Sci. Technol. 2014. V. 32. P. 49.
- 4. Scholes C.A., Ghosh U.K. // Membranes. 2017. V. 7. P. 1.
- Alders M., Winterhalder D., Wessling M. // Sep. Purif. Technol. 2017. V. 189. P. 433.

- Sidhikku Kandath Valappil R., Ghasem N., Al-Marzouqi M. // J. Ind. Eng. Chem. 2021. V. 98. P. 103.
- 7. *Sazanov Y.N.* //Russ. J. Appl. Chem. 2001. V. 74. P. 1253.
- Dai Z., Deng J., He X., Scholes C.A., Jiang X., Wang B., Guo H., Ma Y., Deng L. // Sep. Purif. Technol. 2021. V. 274. P. 119044.
- 9. *Sunarso J., Hashim S.S., Lin Y.S., Liu S.M.* Membranes for Helium Recovery: An Overview on the Context, Materials and Future Directions. 2017. V. 176. ISBN 6082260813.
- Soleimany A., Hosseini S.S., Gallucci F. // Chem. Eng. Process. Process Intensif. 2017. V. 122. P. 296.
- Sanaeepur H., Ebadi Amooghin A., Bandehali S., Moghadassi A., Matsuura T., Van der Bruggen B. // Prog. Polym. Sci. 2019. V. 91. P. 80.
- 12. Volgin I.V., Batyr P.A., Matseevich A.V., Dobrovskiy A.Y., Andreeva M.V., Nazarychev V.M., Larin S.V., Goikhman M.Y., Vizilter Y.V., Askadski A.A. et al. Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks. ACS Omega 2022.

- 13. Velioğlu S., Tantekin-Ersolmaz S.B., Chew J.W. // J. Memb. Sci. 2017. V. 543. P. 233.
- 14. Robesonv L. // J. Memb. Sci. 1997. V. 132. P. 33.
- Park J.Y., Paul D.R. // J. Memb. Sci. 1997. V. 125. P. 23.
- Ryzhikh V., Tsarev D., Alentiev A., Yampolskii Y. // J. Memb. Sci. 2015. V. 487. P. 189.
- Alentiev A.Y., Loza K.A., Yampolskii Y.P. // J. Memb. Sci. 2000. V. 167. P. 91.
- Hirayama Y., Yoshinaga T., Kusuki Y., Ninomiya K., Sakakibara T., Tamari T. // J. Memb. Sci. 1996. V. 111. P. 169.
- Cornelius C.J., Marand E. // J. Memb. Sci. 2002. V. 202. P. 97.
- Coleman M.R., Koros W.J. // J. Polym. Sci., Polym. Phys. 1994. V. 32. P. 1915.
- 21. Costello L.M., Koros W.J. // J. Polym. Sci., Polym. Phys. 1995. V. 33. P. 135.
- Ayala D., Lozano A.E., De Abajo J., García-Perez C., De La Campa J.G., Peinemann K.V., Freeman B.D., Prbhakar R. // J. Memb. Sci. 2003. V. 215. P. 61.
- Barbari T.A., Koros W.J., Paul D.R. // J. Memb. Sci. 1989. V. 42. P. 69.
- Rezac M.E., Schöberl B. // J. Memb. Sci. 1999. V. 156. P. 211.
- Kim T.H., Koros W.J., Husk G.R. // J. Memb. Sci. 1989.
 V. 46. P. 43.

- 26. Xu Z.K., Böhning M., Springer J., Glatz F.P., Mülhaupt R. // J. Polym. Sci., Polym. Phys. 1997. V. 35. P. 1855.
- 27. Kim T.H., Koros W.J., Husk G.R., O'Brien K.C. // J. Memb. Sci. 1988. V. 37. P. 45.
- Hirayama Y., Yoshinaga T., Nakanishi S., Kusuki Y. // Polymer Membranes in Gas and Vapor Separation / Ed. by B.D. Freeman, I. Pinnau Washington: ACS, 1999. P. 194.
- 29. Lin W.H., Vora R.H., Chung T.S. // J. Polym. Sci., Polym. Phys. 2000. V. 38. P. 2703.
- 30. *Korikov A.P., Vygodskii Ya.S., Yampol'skii Yu.P.* // Polymer Science A. 2001. V. 43. № 6. P. 638.
- Fritsch D., Peinemann K.V. // J. Memb. Sci. 1995. V. 99. P. 29.
- Al-Masri M., Kricheldorf H.R., Fritsch D. // Macromolecules. 1999. V. 32. P. 7853.
- Al-Masri M., Fritsch D., Kricheldorf H.R. // Macromolecules 2000. V. 33. P. 7127.
- 34. Fateev N.N., Solomakhin V.I., Baiminov B.A., Chuchalov A.V., Sapozhnikov D.A., Vygodskii Y.S. // Polymer Science C. 2020. V. 62. № 2. P. 266.
- 35. *Guiver M.D., Robertson G.P., Dai Y., Bilodeau F., Kang Y.S., Lee K.J., Jho J.Y., Won J. //* J. Polym. Sci., Polym. Chem. 2002. V. 40. № 23. P. 4193.
- 36. *Xiao Y., Dai Y., Chung T.-S., Guiver M.D.* // Macromolecules. 2005. V. 38. № 24. P. 10042.
- 37. *Hosseini S.S., Chung T.S.* // J. Memb. Sci. 2009. V. 328. № 1–2. P. 174.